Nowadays, Graphical Processing Units (GPUs) have become increasingly popular due to their high computational power and low prices. This makes them particularly suitable for high-performance computing applications, like data elaboration and financial computation. In these fields, high efficient test methodologies are mandatory. One of the most effective ways to detect and localize hardware faults in GPUs is a Software-Based-Self-Test methodology (SBST). In this paper a fully comprehensive SBST and fault localization methodology for GPUs is presented. This novel approach exploits different custom test strategies for each component inside the GPU architecture. Such strategies guarantee both permanent fault detection and accurate fault localization.
High computation is a predominant requirement in many applications. In this field, Graphic Processing Units (GPUs) are more and more adopted. Low prices and high parallelism let GPUs be attractive, even in safety critical applications. Nonetheless, new methodologies must be studied and developed to increase the dependability of GPUs. This paper presents effective fault mitigation strategies for CUDA-based GPUs against permanent faults. The methodology to apply these strategies, on the software to be executed, is fully described and verified. The graceful performance degradation achieved by the proposed technique outperforms multithreaded CPU implementation, even in presence of multiple permanent faults.
Nowadays, Graphical processing Units (GPUs) have become increasingly popular due to their high computational power and low prices. This makes them particularly suitable for high-performance computing applications, like data elaboration and image processing. In these fields, the capability of properly work even in presence of faults is mandatory. This paper presents an innovative approach, that combines a Software Based Self Test & Diagnosis (SBSTD) methodology with a fault mitigation strategy, to increase the robustness of a CUDA Fermi GPU-based system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.