It is generally accepted that one of the major and important contributions to skin aging, skin disorders, and skin diseases results from reactive oxygen species. More than other tissues, the skin is exposed to numerous environmental chemical and physical agents, such as ultraviolet light, causing oxidative stress. Accelerated cutaneous UV-induced aging, photo aging, is only one of the harmful effects of continual oxygen radical production in the skin. Interestingly, our ELISA assays of 8-oxo-2'-deoxyguanosine in skin of young and old Balb/c mice showed that cumene hydroperoxide-induced accumulation of the biomarker of oxidative DNA damage in skin of 32-week-old mice occurred independently of their vitamin E status, while no accumulation of oxo8-dG was detectable in the skin of young animals. This suggests that vitamin E is not the major protector of skin against cumene hydroperoxide-induced oxidative stress. Production and accumulation of apoptotic cells is one of the characteristic features of skin damage by oxidative stress that, in the absence of effective scavenging by macrophages, dramatically enhances oxidative damage and inflammatory response. In our model experiments, we demonstrated that Cu-OOH induces significant oxidative stress in phospholipids of normal human epidermal keratinocytes (NHEK) whose characteristic feature is an early and profound oxidation of phosphatidylserine (PS), likely related to PS externalization. Since externalized PS is a signal for recognition of apoptotic cells by macrophage scavenger receptors, PS oxidation may be translatable into elimination of thus damaged NHEKs. Experiments are now underway to determine whether inhibition of PS oxidation by antioxidants may interfere with important signaling functions of oxidative stress in eliminating apoptotic cells.
The APS Journal Legacy Content is the corpus of 100 years of historical scientific research from the American Physiological Society research journals. This package goes back to the first issue of each of the APS journals including the American Journal of Physiology, first published in 1898. The full text scanned images of the printed pages are easily searchable. Downloads quickly in PDF format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.