The hydrogel obtained by a zwitterionic Noxide surfactant is proposed as the core of a pH-responsive artificial gland model. The viscosity and pH variations, induced by pulse additions of acid and base, are investigated by a pyridinium salt and alizarin red S, respectively. The artificial gland model is implemented by enclosing the gel within a dialysis membrane, and its secretory action is tested by monitoring the release of a fluorescent acridinium salt.
Zirconium phosphate is able to intercalate basic molecules and it is an effective drug carrier that can be used to project slow release for topical applications.
<div><div><div><p>The structural features of a series of diverse Deep Eutectic Solvents (DESs) have been investigated and characterized by means of two fluorescent probes. The spectral and photophysical properties of the latter are strictly dependent on the experienced environment, so that they can provide insights into the polarity, viscosity, hydrogen-bond network, and micro-heterogeneity of the various DESs.</p><p>In fact, the investigated DESs exhibit a variety of properties with regards to their hydrophilicity, acidity, and hydrogen-bond ability, and these details were deeply probed by the two fluorescent molecules. The effect of the addition of water, which is a key strategy for tuning the properties of these structured systems, was also tested. In particular, the excited state dynamics of the probes, measured by femtosecond-resolved transient absorption, proved instrumental in understanding the changes in the structural properties of the DESs, namely reduced viscosity and enhanced heterogeneity, as the water percentage increases. Differences between the various DESs in terms of both local microheterogeneity and bulk viscosity also emerged from the peculiar multi-exponential solvation dynamics undergone by the excited states of the probes.</p></div></div></div>
<div><div><div><p>The structural features of a series of diverse Deep Eutectic Solvents (DESs) have been investigated and characterized by means of two fluorescent probes. The spectral and photophysical properties of the latter are strictly dependent on the experienced environment, so that they can provide insights into the polarity, viscosity, hydrogen-bond network, and micro-heterogeneity of the various DESs.</p><p>In fact, the investigated DESs exhibit a variety of properties with regards to their hydrophilicity, acidity, and hydrogen-bond ability, and these details were deeply probed by the two fluorescent molecules. The effect of the addition of water, which is a key strategy for tuning the properties of these structured systems, was also tested. In particular, the excited state dynamics of the probes, measured by femtosecond-resolved transient absorption, proved instrumental in understanding the changes in the structural properties of the DESs, namely reduced viscosity and enhanced heterogeneity, as the water percentage increases. Differences between the various DESs in terms of both local microheterogeneity and bulk viscosity also emerged from the peculiar multi-exponential solvation dynamics undergone by the excited states of the probes.</p></div></div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.