In neuroendocrine PC-12 cells, evanescent-field fluorescence microscopy was used to track motions of green fluorescent protein (GFP)-labeled actin or GFP-labeled secretory granules in a thin layer of cytoplasm where cells adhered to glass. The layer contained abundant filamentous actin (F-actin) locally condensed into stress fibers. More than 90% of the granules imaged lay within the F-actin layer. One-third of the granules did not move detectably, while two-thirds moved randomly; the average diffusion coefficient was 23 x 10(-4) microm(2)/s. A small minority (<3%) moved rapidly and in a directed fashion over distances more than a micron. Staining of F-actin suggests that such movement occurred along actin bundles. The seemingly random movement of most other granules was not due to diffusion since it was diminished by the myosin inhibitor butanedione monoxime, and blocked by chelating intracellular Mg(2+) and replacing ATP with AMP-PNP. Mobility was blocked also when F-actin was stabilized with phalloidin, and was diminished when the actin cortex was degraded with latrunculin B. We conclude that the movement of granules requires metabolic energy, and that it is mediated as well as limited by the actin cortex. Opposing actions of the actin cortex on mobility may explain why its degradation has variable effects on secretion.
To increase efficiency of bulk heterojunctions for photovoltaic devices, the functional morphology of active layers has to be understood, requiring visualization and discrimination of materials with very similar characteristics. Here we combine high-resolution spectroscopic imaging using an analytical transmission electron microscope with nonlinear multivariate statistical analysis for classification of multispectral image data. We obtain a visual representation showing homogeneous phases of donor and acceptor, connected by a third composite phase, depending in its extent on the way the heterojunction is fabricated. For the first time we can correlate variations in nanoscale morphology determined by material contrast with measured solar cell efficiency. In particular we visualize a homogeneously blended phase, previously discussed to diminish charge separation in solar cell devices.
Green fluorescent protein fused to human chromogranin B or neuropeptide Y was expressed in PC12 cells and caused bright, punctate fluorescence. The fluorescent points colocalized with the endogenous secretory granule marker dopamine beta-hydroxylase. Stimulation of live PC12 cells with elevated [K+], or of permeabilized PC12 cells with Ca2+, led to Ca2+-dependent loss of fluorescence from neurites. Ca2+ stimulated secretion of both fusion proteins equally well. In living cells, single fluorescent granules were imaged by evanescent-wave fluorescence microscopy. Granules were seen to migrate; to stop, as if trapped by plasmalemmal docking sites; and then to disappear abruptly, as if through exocytosis. Evidently, GFP fused to secreted peptides is a fluorescent marker for dense-core secretory granules and may be used for time-resolved microscopy of single granules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.