The aim of this study was to investigate whether variation in estrogen levels during the menstrual cycle influences susceptibility to exercise-induced muscle damage after stretch-shortening cycle exercise. Physically active women (n = 18; age = 20.2 ± 1.7 yr) participated in this research. The subjects performed one session of 100 maximal drop jumps on day 1 or 2 of the follicular phase and another identical session on day 1 or 2 of the ovulatory phase; the order of the sessions was randomized. Quadriceps femoris muscle peak torque evoked by electrical stimulation and maximal voluntary contraction, muscle pain, and CK activity were measured before and at various times up to 72 h after exercise. It was found that the high estrogen level during the ovulatory phase might be related to an earlier return to baseline muscle strength after strenuous stretch-shortening cycle exercise in that phase compared with the follicular phase. The estrogen effect appears to be highly specific to the damaged site because the differences in most EIMD markers (CK, soreness, and low-frequency fatigue) between the two menstrual cycle phases were small.
Despite extensive data regarding the demands of playing basketball, the relative importance of factors that cause fatigue and muscle potentiation has been explored only tentatively and remains unclear. The aim of this experimental field study was to assess changes in leg muscle power and relate these changes to body temperature modifications and indices of exercise-induced muscle damage in response to a simulated basketball game. College-level male basketball players (n=10) were divided into two teams to play a simulated basketball game. Ten-meter sprint and vertical counter-movement jump tests, core body temperature and creatine-kinase activity were measured within 48 h after the game. The participants’ body temperatures increased after a warm-up (1.9%, p<0.05), continued to increase throughout the game, and reached 39.4 ± 0.4ºC after the fourth quarter (p<0.05). The increase in temperature during the warm-up was accompanied by an improvement in the 10-meter sprint time (5.5%, p<0.05) and jump height (3.8%, p<0.05). The players were able to maintain leg power up to the fourth quarter, i.e., during the major part of the basketball game. There was a significant increase in creatine-kinase at 24 h (>200%, p<0.05) and 48 h (>30%, p<0.05) after the game, indicating damage to the players’ muscles. The basketball players’ sprint and jump performance appear to be at least in part associated with body temperature changes, which might contribute to counteract fatigue during the larger part of a basketball game.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.