Cavitation bubbles do not persist between SWs. Thus, mature bubbles from one pulse do not interfere with the next pulse, even at 120 SW/min. However, cavitation nuclei carried by fine particles released from stones can persist between pulses. These nuclei have little effect on the compressive wave but seed cavitation under the influence of the tensile wave. Bubble growth draws energy from the negative-pressure phase of the SW, reducing its amplitude. This likely affects the dynamics of cavitation bubble clusters at the stone surface, reducing the effectiveness of bubble action in stone comminution.
These in vitro results suggest that coupling in lithotripsy can pose a significant barrier to the transmission of shock wave energy to the patient. Stone breakage was sensitive to air pockets at the coupling interface. Recoupling was particularly disruptive, suggesting that repositioning the patient could substantially degrade coupling quality. It seems reasonable that variability in the quality of coupling could contribute to variability in clinical outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsβcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.