Modified citrus pectin (MCP) has a low-molecular-weight degree of esterification to allow absorption from the small intestinal epithelium into the circulation. MCP produces pleiotropic effects, including but not limited to its antagonism of galectin-3, which have shown benefit in preclinical and clinical models. Regarding cancer, MCP modulates several rate-limiting steps of the metastatic cascade. MCP can also affect cancer cell resistance to chemotherapy. Regarding fibrotic diseases, MCP modulates many of the steps involved in the pathogenesis of aortic stenosis. MCP also reduces fibrosis to the kidney, liver, and adipose tissue. Other benefits of MCP include detoxification and improved immune function. This review summarizes the pleiotropic effects of MCP.
Inflammation is a normal physiological process; however, dysregulation of this process may contribute to inflammatory-based chronic disorders and diseases in animals and humans. Therefore, the antioxidant and anti-inflammatory properties of natural products, often recognized in traditional medicine systems, represent therapeutic modalities to reduce or prevent uncontrolled inflammatory processes which in turn potentially ameliorate or prevent sequelae of inflammatory-based symptoms of chronic diseases. We have investigated the antioxidant and anti-inflammatory effects of honokiol (HNK) and modified citrus pectin (MCP) in vitro and examined whether the MCP : HNK combination has synergistic effects on antioxidant and anti-inflammatory properties. Although both HNK and MCP induced a dose-dependent increase in antioxidant activity, the latter has a consistently higher antioxidant effect. The MCP : HNK (9 : 1) combination induced a synergistic effect on antioxidant activity suggesting that the combination is significantly more efficacious than individual compounds. In mouse monocytes, the lipopolysaccharide- (LPS-) induced tumor necrosis-α (TNF-α) synthesis was significantly inhibited by HNK and the MCP : HNK combination in a dose-dependent manner and synergistic effects were clearly demonstrated with the combination on TNF-α inhibition. This combination effect was also evident on inhibition of nuclear factor-kappa B activity, cyclooxygenase-II activity, and lipid peroxidation in mouse monocytes. Further research into the combination is warranted.
Optimal therapy of biochemically relapsed prostate cancer (BRPC) after local treatment is elusive. An established modified citrus pectin (PectaSol®, P-MCP), a dietary polysaccharide, is an established antagonist of galectin-3, a carbohydrate-binding protein involved in cancer pathogenesis. Based on PSA dynamics, we report on the safety and the primary outcome analysis of a prospective phase II study of P-MCP in non-metastatic BRPC based. Sixty patients were enrolled, and one patient withdrew after a month. Patients (n = 59) were given P-MCP, 4.8 grams X 3/day, for six months. The primary endpoint was the rate without PSA progression and improved PSA doubling time (PSADT). Secondary endpoints were the rate without radiologic progression and toxicity. Patients that did not progress by PSA and radiologically at six months continued for an additional twelve months. After six months, 78% (n = 46) responded to therapy, with a decreased/stable PSA in 58% (n = 34), or improvement of PSADT in 75% (n = 44), and with negative scans, and entered the second twelve months treatment phase. Median PSADT improved significantly (p = 0.003). Disease progression during the first 6 months was noted in only 22% (n = 13), with PSA progression in 17% (n = 10), and PSA and radiologic progression in 5% (n = 3). No patients developed grade 3 or 4 toxicity.
Background Galectin-3 (Gal-3) is a pleiotropic glycan-binding protein shown to be involved in sepsis and acute kidney injury (AKI). However, its role has never been elucidated in sepsis-associated AKI (S-AKI). We aimed to explore Gal-3’s role and its potential utility as a therapeutic target in S-AKI. Methods In 57 patients admitted to the intensive care unit (ICU) with sepsis, serum Gal-3 was examined as a predictor of ICU mortality and development of AKI. In a rat model of S-AKI induced by cecal ligation and puncture (CLP), 7-day mortality and serum Gal-3, Interleukin-6 (IL-6), and creatinine were examined at 2, 8, and 24 hours (h) post-CLP. Two experimental groups received the Gal-3 inhibitor modified citrus pectin (P-MCP) at 400 mg/kg/day and 1200 mg/kg/day, while the control group received water only (n = 18 in each group). Results Among 57 patients, 27 developed AKI and 8 died in the ICU. Serum Gal-3 was an independent predictor of AKI (OR = 1.2 [95% CI 1.1–1.4], p = 0.01) and ICU mortality (OR = 1.4 [95% CI 1.1–2.2], p = 0.04) before and after controlling for age, AKI, and acute physiology and chronic health evaluation (APACHE II) score. In the CLP rat experiment, serum Gal-3 peaked earlier than IL-6. Serum Gal-3 was significantly lower in both P-MCP groups compared to control at 2 h post-CLP (400 mg: p = 0.003; 1200 mg: p = 0.002), and IL-6 was significantly lower in both P-MCP groups at all time points with a maximum difference at 24 h post-CLP (400 mg: p = 0.015; 1200 mg: p = 0.02). In the Gal-3 inhibitor groups, 7-day mortality was significantly reduced from 61% in the control group to 28% (400 mg P-MCP: p = 0.03) and 22% (1200 mg P-MCP: p = 0.001). Rates of AKI per RIFLE criteria were significantly reduced from 89% in the control group to 44% in both P-MCP groups (400 mg: p = 0.007; 1200 mg: p = 0.007). Conclusions This translational study demonstrates the importance of Gal-3 in the pathogenesis of S-AKI, and its potential utility as a therapeutic target. Graphic abstract
Methods have been developed for the detection and depletion of porcine Gal-3. These methods will be used to study the specific effects of Gal-3 depletion via apheresis in porcine models of disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.