A recent method, denoted in vivo g-ratio-weighted imaging, has related the microscopic gratio, only accessible by ex vivo histology, to noninvasive MRI markers for the fiber volume fraction (FVF) and myelin volume fraction (MVF). Different MRI markers have been proposed for g-ratio weighted imaging, leaving open the question which combination of imaging markers is optimal. To address this question, the repeatability and comparability of four g-ratio methods based on different combinations of, respectively, two imaging markers for FVF (tract-fiber density, TFD, and neurite orientation dispersion and density imaging, NODDI) and two imaging markers for MVF (magnetization transfer saturation rate, MT, and, from proton density maps, macromolecular tissue volume, MTV) were tested in a scan-rescan experiment in two groups. Moreover, it was tested how the repeatability and comparability were affected by two key processing steps, namely the masking of unreliable voxels (e.g., due to partial volume effects) at the group level and the calibration value used to link MRI markers to MVF (and FVF). Our data showed that repeatability and comparability depend largely on the marker for the FVF (NODDI outperformed TFD), and that they were improved by masking. Overall, the g-ratio method based on NODDI and MT showed the highest repeatability (90%) and lowest variability between groups (3.5%). Finally, our results indicate that the calibration procedure is crucial, for example, calibration to a lower g-ratio value (g 5 0.6) than the commonly used one (g 5 0.7) can change not only repeatability and comparability but also the reported dependency on the FVF imaging marker. Hum Brain Mapp 39:24-41, 2018.V C 2017 Wiley Periodicals, Inc.
The NODDI-DTI signal model is a modification of the NODDI signal model that formally allows interpretation of standard single-shell DTI data in terms of biophysical parameters in healthy human white matter (WM). The NODDI-DTI signal model contains no CSF compartment, restricting application to voxels without CSF partial-volume contamination. This modification allowed derivation of analytical relations between parameters representing axon density and dispersion, and DTI invariants (MD and FA) from the NODDI-DTI signal model. These relations formally allow extraction of biophysical parameters from DTI data. NODDI-DTI parameters were estimated by applying the proposed analytical relations to DTI parameters estimated from the first shell of data, and compared to parameters estimated by fitting the NODDI-DTI model to both shells of data (reference dataset) in the WM of 14 in vivo diffusion datasets recorded with two different protocols, and in simulated data. The first two datasets were also fit to the NODDI-DTI model using only the first shell (as for DTI) of data. NODDI-DTI parameters estimated from DTI, and NODDI-DTI parameters estimated by fitting the model to the first shell of data gave similar errors compared to two-shell NODDI-DTI estimates. The simulations showed the NODDI-DTI method to be more noise-robust than the two-shell fitting procedure. The NODDI-DTI method gave unphysical parameter estimates in a small percentage of voxels, reflecting voxelwise DTI estimation error or NODDI-DTI model invalidity. In the course of evaluating the NODDI-DTI model, it was found that diffusional kurtosis strongly biased DTI-based MD values, and so, making assumptions based on healthy WM, a novel heuristic correction requiring only DTI data was derived and used to mitigate this bias. Since validations were only performed on healthy WM, application to grey matter or pathological WM would require further validation. Our results demonstrate NODDI-DTI to be a promising model and technique to interpret restricted datasets acquired for DTI analysis in healthy white matter with greater biophysical specificity, though its limitations must be borne in mind.
Owing to novel neuroimaging approaches and evaluation methods, a range of possibilities for exploring brain differences between migraine patients and healthy subjects have become available. These include both regional structural alterations and network connectivity changes. Despite methodological advances, most studies involve still small populations and results are often inconclusive. Future work should clearly involve larger cohorts and combine different techniques to help us better understand the diagnostic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.