Immaterial damage compensation is a controversial matter in the judicial practice of several law systems. Due to a lack of criteria for its assessment, the judge is free to establish the value based on his/her conviction. Our research motivation is that knowing the estimated amount of immaterial damage compensation at the initial stage of a lawsuit can encourage an agreement between the parties. We thus investigate text regression techniques to predict the compensation value from legal judgments in which consumers had problems with airlines and claim for immaterial damage. We start from a simple pipeline and create others by adding some natural language processing (NLP) and machine learning (ML) techniques, which we call adjustments. The adjustments include N-Grams Extraction, Feature Selection, Overfitting Avoidance, Cross-Validation and Outliers Removal. An special adjustment, Addition of Attributes Extracted by the Legal Expert (AELE), is proposed as a complementary input to the case text. We evaluate the impact of adding these adjustments in the pipeline in terms of prediction quality and execution time. N-Grams Extraction and Addition of AELE have the biggest impact on the prediction quality. In terms of execution time, Feature Selection and Overfitting Avoidance have significant importance. Moreover, we notice the existence of pipelines with subsets of adjustments that achieved better prediction quality than a pipeline with them all. The result is promising since the prediction error of the best pipeline is acceptable in the legal environment. Consequently, the predictions will likely be helpful in a legal environment.
O Poder Judiciário se apresenta como um dos focos de debate sobre a implementação de tecnologias relacionadas à Inteligência Artificial (IA), de onde advém a técnica de aprendizado de máquina (ML - machine learning). Nesse contexto, apresenta-se o problema de pesquisa: é possível que o aprendizado de máquina contribua para o funcionamento do sistema de precedentes? Partindo-se de uma hipótese inicial positiva e empregando-se o método indutivo, o artigo expõe um estudo de dois casos, com o levantamento de dados referentes a dois institutos processuais: um relacionado à não observância dos precedentes, a Reclamação; e outro pertinente às técnicas para julgamento de casos repetitivos, o Incidente de Resolução de Demandas Repetitivas (IRDR). A fim de contextualizar o tema e os objetivos do estudo, a pesquisa apresenta a evolução do conceito de jurisdição, reportando-se às alterações trazidas pelo Código de Processo Civil (CPC) de 2015; e, ainda, as noções de E-Judiciário e E-Jurisdição combinadas com as funcionalidades da IA, bem como trabalhos relacionados utilizando a técnica de ML. Com isso, a proposta de possíveis aplicações envolvendo a técnica de ML se fundamenta na identificação desses dois institutos relacionados ao funcionamento do sistema de precedentes, que podem ser aperfeiçoados com a implementação da tecnologia, no intuito de atingir um modelo de jurisdição inteligente.
Resumo Com a promessa de dar mais agilidade e transparência aos trâmites processuais, o Poder Judiciário, no contexto de governo aberto e acesso à Justiça, vem implementando, ao longo da última década, o processo judicial eletrônico para aprimorar o desenvolvimento de suas atividades administrativas. Tendo em vista analisar até que ponto isso se efetiva na prática, buscou-se verificar, por meio de um estudo de caso estruturado no âmbito da Justiça Federal brasileira, os entraves ao acesso de dados e a disponibilização de informações processuais. Tal verificação considerou: a agilidade no retorno das solicitações; a diversidade de órgãos internos acionados; o grau de informatização dos processos judiciais eletrônicos; a transparência no retorno das solicitações; e a burocracia envolvida no manejo das solicitações. As dificuldades no acesso aos dados processuais, à aplicação da Lei de Acesso à Informação, bem como a lenta e desordenada informatização demonstram que ainda há uma distância considerável entre a realidade forense e os avanços legislativos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.