Transport by normal diffusion can be decomposed into hydrodynamic modes which relax exponentially toward the equilibrium state. In chaotic systems with 2 degrees of freedom, the fine scale structures of these modes are singular and fractal, characterized by a Hausdorff dimension given in terms of Ruelle's topological pressure. For long-wavelength modes, we relate the Hausdorff dimension to the diffusion coefficient and the Lyapunov exponent. This relationship is tested numerically on two Lorentz gases, one with hard repulsive forces, the other with attractive, Yukawa forces. The agreement with theory is excellent.
We consider a two-dimensional periodic reactive Lorentz gas, in which a moving point particle undergoes elastic collisions on fixed hard disks and annihilates on absorbing disks, called sinks. We present clear evidence of the existence of a fractal repeller in this open system. Moreover, we establish a relation between the reaction rate, describing the macroscopic evolution of the system, and two characteristic quantities of the microscopic chaos: the average Lyapunov exponent and the Hausdorff codimension of the fractal repeller.
In chaotic reaction-diffusion systems with two degrees of freedom, the modes governing the exponential relaxation to the thermodynamic equilibrium present a fractal structure which can be characterized by a Hausdorff dimension. For long wavelength modes, this dimension is related to the Lyapunov exponent and to a reactive diffusion coefficient. This relationship is tested numerically on a reactive multibaker model and on a two-dimensional periodic reactive Lorentz gas. The agreement with the theory is excellent.
We investigate the electrostatic equilibria of N discrete charges of size 1/N on a two dimensional conductor (domain). We study the distribution of the charges on symmetric domains including the ellipse, the hypotrochoid and various regular polygons, with an emphasis on understanding the distributions of the charges, as the shape of the underlying conductor becomes singular. We find that there are two regimes of behavior, a symmetric regime for smooth conductors, and a symmetry broken regime for "singular" domains.For smooth conductors, the locations of the charges can be determined, to within O( √ log N /N 2 ) by an integral equation due to Pommerenke [Math. Ann., 179:212-218, (1969)]. We present a derivation of a related (but different) integral equation, which has the same solutions. We also solve the equation to obtain (asymptotic) solutions which show universal behavior in the distribution of the charges in conductors with somewhat smooth cusps.Conductors with sharp cusps and singularities show qualitatively different behavior, where the symmetry of the problem is broken, and the distribution of the discrete charges does not respect the symmetry of the underlying domain. We investigate the symmetry breaking both theoretically, and numerically, and find good agreement between our theory and the numerics. We also find that the universality in the distribution of the charges near the cusps persists in the symmetry broken regime, although this distribution is very different from the one given by the integral equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.