Recognition of a specific DNA sequence by a protein is probably the best example of macromolecular interactions leading to various events. It is a prerequisite to understanding the basis of protein-DNA interactions to obtain a better insight into fundamental processes such as transcription, replication, repair, and recombination. DNA methyltransferases with varying sequence specificities provide an excellent model system for understanding the molecular mechanism of specific DNA recognition. Sequence comparison of cloned genes, along with mutational analyses and recent crystallographic studies, have clearly defined the functions of various conserved motifs. These enzymes access their target base in an elegant manner by flipping it out of the DNA double helix. The drastic protein-induced DNA distortion, first reported for HhaI DNA methyltransferase, appears to be a common mechanism employed by various proteins that need to act on bases. A remarkable feature of the catalytic mechanism of DNA (cytosine-5) methyltransferases is the ability of these enzymes to induce deamination of the target cytosine in the absence of S-adenosyl-L-methionine or its analogs. The enzyme-catalyzed deamination reaction is postulated to be the major cause of mutational hotspots at CpG islands responsible for various human genetic disorders. Methylation of adenine residues in Escherichia coli is known to regulate various processes such as transcription, replication, repair, recombination, transposition, and phage packaging.
EcoP1I and EcoP15I are members of type III restriction-modification enzymes. EcoPI and EcoP15I DNA methyltransferases transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the N6 position of the second adenine residues in their recognition sequences, 5'-AGACC-3' and 5'-CAGCAG-3' respectively. We have altered various residues in two highly conserved sequences, FxGxG (motif I) and DPPY (motif IV) in these proteins by site-directed mutagenesis. Using a mixture of in vivo and in vitro assays, our results on the mutational analysis of these methyltransferases demonstrate the universal role of motif I in AdoMet binding and a role for motif IV in catalysis. All six cysteine residues in EcoP15I DNA methyltransferase have been substituted with serine and the role of cysteine residues in EcoP15I DNA methyltransferase catalysed reaction assessed. The Res subunits of type III restriction enzymes share a distant sequence similarity with and contain the motifs characteristic of the DEAD box proteins. We have carried out site-directed mutagenesis of the conserved residues in two of the helicase motifs of the EcoP1I restriction enzyme in order to investigate the role of motifs in DNA cleavage by this enzyme. Our findings indicate that certain conserved residues in these motifs are involved in ATP hydrolysis while the other residues are involved in coupling restriction of DNA to ATP hydrolysis. Taken collectively, these results form the basis for a detailed structure-function analysis of EcoP1I and EcoP15I restriction enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.