Insecticide cartap hydrochloride (C) was fabricated as nanospheres by a two-step method of ionic gelification and polyelectrolyte complexation of alginate (ALG) and chitosan (CS) to undermine its adverse effects on environment. Nanospheres were characterized by field emission scanning electron microscope, Fourier transform infrared spectra and x-ray diffraction. The size of cartap hydrochloride entrapped chitosan alginate nanospheres (C-CS-ALG nps) was in range of 107.58–173.07 nm. Cartap hydrochloride nanospheres showed encapsulation efficiency of 76.19% and were stable for 30 d at ambient temperature. Release of cartap from nanospheres fitted best with first order linear kinetics followed by Hixson and Higuchi model suggesting super case II transport release. With the application of such control release nanoformulations, it is possible to reduce the frequency of field application of insecticide due to its slow release to the target organism, which is economical as well as environmentally safe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.