Abstract:A soil moisture content map is important for providing information about the distribution of moisture in a given area. Moisture content directly influences agricultural yield thus it is crucial to have accurate and reliable information about moisture distribution and content in the field. Since soil is a porous medium modified generalized Archie's equation provides the basic formula to calculate moisture content data based on measured EC a . In this study we aimed to find a more accurate and cost effective method for measuring moisture content than manual field sampling. Locations of 25 sampling points were chosen from our research field as a reference. We assumed that soil moisture content could be calculated by measuring apparent electrical conductivity (EC a ) using the Veris-3100 on-the-go soil mapping tool. Statistical analysis was carried out on the 10.791 EC a raw data in order to filter the outliers. The applied statistical method was ±1.5 interquartile (IRQ) distance approach. The visualization of soil moisture distribution within the experimental field was carried out by means of ArcGIS/ArcMAP using the inverse distance weighting interpolation method. In the investigated 25 sampling points, coefficient of determination between calculated volumetric moisture content data and measured EC a was R 2 = 0.87. According to our results, volumetric moisture content can be mapped by applying EC a measurements in these particular soil types.
Conservation tillage harmonizes soil protection with demands of the crop, soil and climate. The continuous conservation tillage improves soil properties and modifies impact of weather extremes. The aim of the paper was to investigate the changes in four soil physical states affected by soil conservation tillage and to evaluate soil water content in a critical period. The study was carried out on Chernozems applying six tillage treatments, that are loosening, ploughing, tine tillage (a deeper, and a shallower), disk tillage and direct drilling. The investigation suggested that soil conservation was the major solution resulting in the balanced water content (SWC) and penetration resistance values in both treatments under peculiar weather conditions. However, the crumb ratio and the crusted area resulted in significant differences between the treatments, presumably due to the level of surface preservation. Soil water content differed significantly between months, with higher contents in spring and lower values in the end of summer. The higher SWC expected at the beginning of the growing season was reliably fulfilled, but the SWC level for workabilty differed from the optimum.
Temperature and moisture are essential factors in germination and seedling growth. The purpose of this research was to assess the germination and growth of wheat (Triticum aestivum L.) seeds under various abiotic stressors. It was conducted in the Agronomy Institute of the Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary. Six distinct temperature levels were used: 5, 10, 15, 20, 25, and 30 °C. Stresses of drought and waterlogging were quantified using 25 water levels based on single-milliliter intervals and as a percentage based on thousand kernel weight (TKW). Seedling density was also tested. Temperature significantly influenced germination duration and seedling development. 20 °C was ideal with optimal range of 15 °C to less than 25 °C. Germination occurred at water amount of 75% of the TKW, and its ideal range was lower and narrower than the range for seedling development. Seed size provided an objective basis for defining germination water requirements. The current study established an optimal water supply range for wheat seedling growth of 525–825 percent of the TKW. Fifteen seeds within a 9 cm Petri dish may be preferred to denser populations.
This paper provides an overview of the progress of tillage in Hungary. The local and international impacts on the national practice are summarized, and some adoption of the conservation tillage results is presented concerning Hungary. The interest in conservation agriculture in Hungary dates back almost 120 years; however, any significant changes only occurred in the last 50 years. Interestingly, the factors of progress and restraint in tillage have appeared simultaneously over the years. Among the factors restraining tillage progress, the most retarding were the beliefs that have existed for many decades, as soil conservation was not considered nor was the need to mitigate climate-related hazards. Progress was driven by the commitment to soil protection, the opportunity to raise farming standards, and the need to mitigate climate-related threats. Since the average yield in Hungary was usually sufficient for the domestic need, the main objective of crop production was to avoid yield loss. Long-term experimental data and monitoring results were considered for this study. The impacts of new tillage solutions, elaborated in foreign countries, on tillage modernization were reviewed. The experiences and first results in no-till (direct drilling) and strip-tillage showed that difficulties can gradually be reduced through site-specific technology solutions. The need for subsoiling is not a matter of debate nowadays but rather the timing of operation and the investigation of the duration of the effects. Due to its complex advantages, tine tillage occupies an increasing rank among soil conservation systems. The area of ploughed soils has decreased; however, improved implementation is required.
A useful method was improved to test and to evaluate the susceptibility of plants to fire blight and the virulence of E. amylovora strains. Six Hungarian strains from different host plants were tested on in vitro cultured apple rootstocks. Disease rating was used for the characterization of the process of disease development. The different strains had different capacity to cause disease, mainly in the first period of incubation. There were significant differences between the virulence of the strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.