Abstract. Electrostatic spinning (Electrospinning, ES) was applied to prepare Donepezil HCl loaded nanofibers as a potential orally dissolving dosage form. Electrospinning of water solutions of different polymers were performed in order to fabricate a consistent and removable web on the collector with ultra-fast dissolution in water based media. Poly(vinyl-alcohol) of low molecular weight was found to be the most appropriate for this purpose. Morphology of the prepared nanofibers was characterized by scanning electron microscope as a function of viscosity and drug content. Diameters of the fibers were between 100 and 300 nm with narrow distribution. In vitro drug release of the webs was immediate (less than 30 s) after immersion independently of their drug content owing to the formed huge surface area, while cast films with the same compositions and commercial tablets needed 30 min or more for complete dissolution. The developed technology for the preparation of orally dissolving web (ODW) formulations is a promising way for producing effective and acceptable dosage forms for children, older people and patients with dysphagia.
Melt blowing (MB) was investigated to prepare a fast dissolving fibrous drug-loaded solid dispersion and compared with solvent-based electrospinning (SES) and melt electrospinning (MES). As a conventional solvent-free technique coupled with melt extrusion and using a high-speed gas stream, MB can provide high-quality micro- and nanofibers at industrial throughput levels. Carvedilol, a weak-base model drug with poor water solubility, was processed using a common composition optimized for the fiber spinning and blowing methods based on a hydrophilic vinylpyrrolidone-vinyl acetate copolymer (PVPVA64) and PEG 3000 plasticizer. Scanning electron microscopy combined with fiber diameter analysis showed diameter distributions characteristic to each prepared fibrous fabrics (the mean value increased toward SES
a b s t r a c tTwo continuous processes, the spray drying method, producing microparticles in presence of hot gas flow, and the electrospinning technology, producing continuous polymer nanofibers at low temperature under high electric fields, were investigated and compared the first time. Both techniques were used to prepare slow release caffeine (as a model of rapidly water-soluble drug) using water-insoluble, biocompatible and bioresorbable PLGA and PLA as polymeric matrix. The structural characterization of the obtained samples was performed using SEM, XRD, DSC and at-line Raman mapping, while in vitro dissolution was detected by UV spectrophotometer. We found that the release profile of a highly water soluble drug can be adjusted to the requirements through the investigated continuous technologies. Solid molecular dispersion of caffeine at colloidal level could be prepared in PLA matrix using electrostatic spinning. Furthermore the continuous nonwoven structure of ultrafine fibers, produced this way, allows easer handling than that of independent fine particle's. On the other hand continuous production of drug loaded microspheres with slightly less performance can be performed with the conventional technology of spray drying which is well known in the pharmaceutical industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.