Citrus is one of the world’s most important fruit crops, contributing essential nutrients, such as vitamin C and minerals, to the human diet. It is characterized by two important traits: first, its major edible part is composed of juice sacs, a unique structure among fruit, and second, relatively high levels of citric acid are accumulated in the vacuole of the juice sac cell. Although the major routes of primary metabolism are generally the same in citrus fruit and other plant systems, the fruit’s unique structural features challenge our understanding of carbon flow into the fruit and its movement through all of its parts. In fact, acid metabolism and accumulation have only been summarized in a few reviews. Here we present a comprehensive view of sugar, acid and amino acid metabolism and their connections within the fruit, all in relation to the fruit’s unique structure.
Summary
Chloroplast development and chlorophyll content in the immature fruit has a major impact on the morphology and quality in pepper (Capsicum spp.) fruit. Two major quantitative trait loci (QTLs), pc1 and pc10 that affect chlorophyll content in the pepper fruit by modulation of chloroplast compartment size were previously identified in chromosomes 1 and 10, respectively. The pepper homolog of GOLDEN2‐LIKE transcription factor (CaGLK2) has been found as underlying pc10, similar to its effect on tomato chloroplast development. In the present study, we identified the pepper homolog of the zinc‐finger transcription factor LOL1 (LSD ONE LIKE1; CcLOL1) as the gene underlying pc1. LOL1 has been identified in Arabidopsis as a positive regulator of programmed cell death and we report here on its role in controlling fruit development in the Solanaceae in a fruit‐specific manner. The light‐green C. chinense parent used for QTL mapping was found to carry a null mutation in CcLOL1. Verification of the function of the gene was done by generating CRISPR/Cas9 knockout mutants of the orthologous tomato gene resulting in light‐green tomato fruits, indicating functional conservation of the orthologous genes in controlling chlorophyll content in the Solanaceae. Transcriptome profiling of light and dark‐green bulks differing for pc1, showed that the QTL affects multiple photosynthesis and oxidation‐reduction associated genes in the immature green fruit. Allelic diversity of three known genes CcLOL1, CaGLK2, and CcAPRR2 that influence pepper immature fruit color, was found to be associated with variation in chlorophyll content primarily in C. chinense.
HighlightThe ambiguous ripening nature of fig fruits contradicts the climacteric definition. One ethylene-responsive factor gene is potentially the ethylene-synthesis regulator responsible for the non-climacteric auto-inhibition of ethylene production in fig.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.