Invasive animals depend on finding a balanced nutritional intake to colonize, survive, and reproduce in new environments. This can be especially challenging during situations of fluctuating cold temperatures and food scarcity, but phenotypic plasticity may offer an adaptive advantage during these periods. We examined how lifespan, fecundity, pre‐oviposition periods, and body nutrient contents were affected by dietary protein and carbohydrate (P:C) ratios at variable low temperatures in two morphs (winter morphs WM and summer morphs SM) of an invasive fly,
Drosophila suzukii.
The experimental conditions simulated early spring after overwintering and autumn, crucial periods for survival. At lower temperatures, post‐overwintering WM lived longer on carbohydrate‐only diets and had higher fecundity on low‐protein diets, but there was no difference in lifespan or fecundity among diets for SM. As temperatures increased, low‐protein diets resulted in higher fecundity without compromising lifespan, while high‐protein diets reduced lifespan and fecundity for both WM and SM. Both SM and WM receiving high‐protein diets had lower sugar, lipid, and glycogen (but similar protein) body contents compared to flies receiving low‐protein and carbohydrate‐only diets. This suggests that flies spend energy excreting excess dietary protein, thereby affecting lifespan and fecundity. Despite having to recover from nutrient depletion after an overwintering period, WM exhibited longer lifespan and higher fecundity than SM in favorable diets and temperatures. WM exposed to favorable low‐protein diet had higher body sugar, lipid, and protein body contents than SM, which is possibly linked to better performance. Although protein is essential for oogenesis, WM and SM flies receiving low‐protein diets did not have shorter pre‐oviposition periods compared to flies on carbohydrate‐only diets. Finding adequate carbohydrate sources to compensate protein intake is essential for the successful persistence of
D. suzukii
WM and SM populations during suboptimal temperatures.
The sweet pepper (Capsicum annuum L.) is one of the most important crops in Brazilian farming. Many insect are related to this crop, compromising the quantity and quality of the fruit, representing a production problem. Vegetable diversification is one of the main elements that can be managed for suppressing undesirable insect populations in organic production, once that supports the presence of natural enemies. The basil Ocimum basilicum L. and the marigold Tagetes erecta L. are attractive and nutritious plants for parasitoids, being important candidates for diversified crops. This study evaluated the parasitoids attracted by the association of basil and marigold to organic sweet pepper crop. The experiment comprised three treatments: a) sweet pepper monoculture; b) sweet pepper and basil intercropping; c) sweet pepper and marigold intercropping. Hymenopteran parasitoids were collected over 14 weeks. 268 individuals from 12 families and 41 taxa were collected. Sweet pepper monoculture, sweet pepper-basil intercropping, and sweet pepper-marigold intercropping hosted 40, 98, and 130 individuals and richness of 24, 24, and 23, respectively. Furthermore, the insects of greater abundance in the basil and marigold were different to those collected in the monoculture. The number of parasitoids increased in the associations of sweet pepper with basil and marigold, providing advantages in the use of vegetable diversification for the organic pepper crops management.
The properties of maize pollen in the diet of Doru luteipes were determined by biological responses of the predator feeding on natural preys and artificial diet. The biological parameters of D. luteipes fed on Spodoptera frugiperda (Smith, 1797) eggs, maize pollen, Rhopalosiphum maidis (Fitch, 1856) + maize pollen and R. maidis were assessed. The effect of pollen on artificial diet on the biological variables of the predator nymphs and adults were also evaluated. Time span of nymphal development was greater for D. luteipes exclusively fed on earwigs, with the lowest rate of nymph survival. However, maize pollen plus earwigs in the diet provided the predator´s highest survival rate, whilst percentage of fertile females was double when fed on diets composed of S. frugiperda and R. maidis eggs. Development period decreased when D. luteipes nymphs consumed artificial diet plus pollen but there were high fecundity rates (number of laying/female and total egg/female) and a greater percentage of fertile females when they were fed on maize pollen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.