This document describes an innovative approach for simulating a DSP processor with VLIW architecture, the simulator structure and shows a performance comparison with a state of the arts simulation tool. The simulation approach is based on a threedimensional (phase, time, operation) representation of the pipeline in order to "grab" in a certain time stamp the complete processor status, taking into account the current status and the following. This approach allows to accurately simulate the C6x behavior reducing the simulation time compared with the others on-market available simulators. Moreover the VLIW simulator generating dynamically the instruction set is a flexible tool for the hardware-software co-design.
The increase in the availability of bandwidth for wireless links, network integration, and the computational power on fixed and mobile platforms at affordable costs allows nowadays for the handling of audio and video data, their quality making them suitable for medical application. These information streams can support both continuous monitoring and emergency situations. According to this scenario, the authors have developed and implemented the mobile communication system which is described in this paper. The system is based on ITU-T H.323 multimedia terminal recommendation, suitable for real-time data/video/audio and telemedical applications. The audio and video codecs, respectively, H.264 and G723.1, were implemented and optimized in order to obtain high performance on the system target processors. Offline media streaming storage and retrieval functionalities were supported by integrating a relational database in the hospital central system. The system is based on low-cost consumer technologies such as general packet radio service (GPRS) and wireless local area network (WLAN or WiFi) for lowband data/video transmission. Implementation and testing were carried out for medical emergency and telemedicine application. In this paper, the emergency case study is described.
The increasing of computational power requirements for DSP and Multimedia application and the needs of easy-to-program development environment has driven recent programmable devices toward Very Long Instruction Word (VLIW) [1] architectures and Hw-Sw co-design environments [2]. VLIW architecture allows generating optimized machine code from high-level languages exploiting Instruction Level Parallelism (ILP) [3]. Furthermore, applications requirements and time to market constraints are growing dramatically moving functionalities toward System on Chip (SoC) direction. This paper presents VLIW-SIM, an Application-Driven Architecture-design approach based on Instruction Set simulation. VLIW architectures and Instruction Set simulation were chosen to fulfill multimedia domain requirements and to implement an efficient Hw-Sw co-design environment. The VLIW-SIM simulation technology is based on pipeline status modeling, Simulation cache and Simulation Oriented Hw description. An effective support for Hw-Sw co-design requires high simulation performance (in terms of Simulated Instruction per Second-SIPS), flexibility (the ability to represent a number of different architectures) and cycle accuracy. There is a strong trade-off between these features: cycle accurate or close to cycle accurate simulation have usually low performance [4,5]. Good simulation performance can be obtained loosing the simulator flexibility. Moreover SoC simulation requires a further degree of flexibility in simulating different components (core, co-processors, memories, buses). The proposed approach is focused on interpretative (not compiled [6]) re-configurable Instruction Set Simulator (ISS) in order to support both application design and architecture exploration. VLIW-SIM main features are: efficient host resource allocation, Instruction Set and Architecture description Flexibility (Instruction Set Dynamic Generation and Simulation Oriented Hardware Description), Step by step pipeline status tracking, Simulation Speed and Accuracy. Performance of simulation test for three validation case studies (TI TMS320C62x, TI TMS320C64x and ST200) are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.