The bacterial diversity in a diffuse flow hydrothermal vent habitat at Axial Volcano, Juan de Fuca Ridge was examined shortly after an eruptive event in 1998 and again in 1999 and 2000 using PCR-amplified 16S rRNA gene sequence analyses. While considerable overlap with deep-sea background seawater was found within the alpha- and gamma-proteobacteria, unique subseafloor phylotypes were distinguishable. These included diverse members of the epsilon-proteobacteria, high temperature groups such as Desulfurobacterium, Gram-positive bacteria, and members of novel candidate divisions WS6 and ABY1. Phylotype richness was highest in the particle-attached populations from all three sampling periods, and diversity appeared to increase over that time, particularly among the epsilon-proteobacteria. A preliminary model of the subseafloor is presented that relates microbial diversity to temperature, chemical characteristics of diffuse flow fluids and the degree of mixing with seawater.
Enceladus’s long-lived plume of ice grains and water vapor makes accessing oceanic material readily achievable from orbit (around Saturn or Enceladus) and from the moon’s surface. In preparation for the National Academies of Sciences, Engineering and Medicine 2023–2032 Planetary Science and Astrobiology Decadal Survey, we investigated four architectures capable of collecting and analyzing plume material from orbit and/or on the surface to address the most pressing questions at Enceladus: Is the subsurface ocean inhabited? Why, or why not? Trades specific to these four architectures were studied to allow an evaluation of the science return with respect to investment. The team found that Orbilander, a mission concept that would first orbit and then land on Enceladus, represented the best balance. Orbilander was thus studied at a higher fidelity, including a more detailed science operations plan during both orbital and landed phases, landing site characterization and selection analyses, and landing procedures. The Orbilander mission concept demonstrates that scientifically compelling but resource-conscious Flagship-class missions can be executed in the next decade to search for life at Enceladus.
Summary
Uncultured members of the Chloroflexi phylum are highly enriched in numerous subseafloor environments. Their metabolic potential was evaluated by reconstructing 31 Chloroflexi genomes from six different subseafloor habitats. The near ubiquitous presence of enzymes of the Wood–Ljungdahl pathway, electron bifurcation, and ferredoxin‐dependent transport‐coupled phosphorylation indicated anaerobic acetogenesis was central to their catabolism. Most of the genomes simultaneously contained multiple degradation pathways for complex carbohydrates, detrital protein, aromatic compounds, and hydrogen, indicating the coupling of oxidation of chemically diverse organic substrates to ubiquitous CO2 reduction. Such pathway combinations may confer a fitness advantage in subseafloor environments by enabling these Chloroflexi to act as primary fermenters and acetogens in one microorganism without the need for syntrophic H2 consumption. While evidence for catabolic oxygen respiration was limited to two phylogenetic clusters, the presence of genes encoding putative reductive dehalogenases throughout the phylum expanded the phylogenetic boundary for potential organohalide respiration past the Dehalococcoidia class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.