The transition period in dairy cattle is characterized by many stressors, including an abrupt diet change, but yeast product supplementation can alter the rumen environment to increase dairy cattle productivity. Saccharomyces cerevisiae fermentation product (SCFP) was fed from −29 ± 5 to 42 d relative to calving (RTC) to evaluate the effects on feed intake, milk production, and metabolism. Treatments were control (n = 30) or SCFP (n = 34) incorporated into a total mixed ration. Cows were individually fed 3×/d prepartum and 2×/d postpartum. Blood samples were collected once during each of the following time points RTC: d −28 to −24 (wk −4), d −14 to −10 (wk −2), d 3 to 7 (wk 1), d 12 to 16 (wk 2), and d 31 to 35 (wk 5). Liver biopsies were taken once between d −19 and d −12 (wk −3) and at 14 d in milk. Cows were milked 2×/d, and samples were taken 2 d/wk for composition analysis. Dry matter intake did not differ by treatment, but SCFP increased meals per day and decreased time between meals. Body weight (measured at enrollment, d 0, and d 42 RTC) and body condition score (scored weekly) were not affected by treatment. Milk, energycorrected milk, and fat-corrected milk yields did not differ by treatment. Milk fat concentration was greater for SCFP, with significant differences in wk 4 and 5. Milk lactose concentration tended to be greater for the control and milk urea nitrogen tended to be lesser for the control, but there were no treatment effects on milk protein concentration or somatic cell count. Assuming equal digestibility, energy balance deficit was greater for SCFP than for the control (−6.15 vs. −4.34 ± 0.74 Mcal/d), with significant differences in wk 4 and 5. Plasma concentrations of free fatty acids, β-hydroxybutyrate, glucose, and insulin did not differ with treatment, but cholesterol was greater for SCFP. Liver triglyceride increased and liver cholesterol decreased with time. Liver triglyceride did not differ by treatment, but liver cholesterol tended to be lesser in SCFP. Relative mRNA abundance of cholesterolrelated genes (SREBF2, HMGCS1, HMGCR, MTTP, SPOB100, APOA1), FGF21, and CPT1A did not differ by treatment, but PCK1 tended to be greater for SCFP. The ketogenic transcript HMGCS2 was greater for SCFP, which aligns with SCFP increasing incidence of subclinical ketosis; however, BDH did not differ between treatments. In conclusion, SCFP supplementation increased meals per day with less time between meals, increased milk fat concentration, altered cholesterol metabolism, and increased incidence of subclinical ketosis, but early-lactation milk yield and metabolism were generally unaffected.
Lactating Holstein cows were enrolled in a study beginning before first insemination. Cows were supplemented with a rumen-protected glucose (RPG) product to test the hypothesis that circulating progesterone concentrations could be increased by increasing blood glucose, which causes an increase in insulin, subsequently decreasing progesterone clearance by liver enzymes. Supplementation occurred at 0, 2.2, 4.4, or 8.8 lb per head per day to test a dose response. Treatment began 3 days before ovulation and continued until day 12 of the estrous cycle. Rumen-protected glucose did not impact serum concentration of glucose before or after feeding, but the change in insulin concentration (post-feedingpre-feeding) was greater for the control cows compared with cows that received the three doses of RPG. Crude protein (CP) intake and milk urea nitrogen (MUN) increased linearly with treatment, but dry matter intake (DMI) and milk yield were unaffected by treatment. Concentrations of progesterone were unaffected by treatment, and pregnancy risk at first insemination was reduced by treatment. Rumenprotected glucose failed to increase serum insulin or progesterone concentrations.
Dairy cattle are subjected to oxidative stress, inflammation, and altered immune function during the transition to lactation. The objective of this study was to evaluate the effects of a dietary Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V) on oxidative status, inflammation, and innate and adaptive immune responses during the transition period. Holstein cows were blocked by parity, expected calving date, and previous milk yield and then randomly assigned to treatment within block. Treatment was a control total mixed ration (n = 30) or SCFP total mixed ration (n = 34) fed from −29 ± 5 to 42 d relative to calving (RTC). Blood was sampled during wk −4, −2, 1, 2, and 5 and liver tissue at wk −3 and 2 RTC. Oxidative status was evaluated in plasma by retinol, α-tocopherol, and malondialdehyde concentrations, glutathione peroxidase activity, and Trolox equivalent antioxidant capacity, and in liver by mRNA abundance of nuclear factor E2-related factor 2 (NFE2L2), metallothionein 1E (MT1E), and glutathione peroxidase 3 (GPX3). Inflammation was evaluated in plasma by haptoglobin (HP) and serum amyloid A (SAA) concentrations and in liver by mRNA abundance of HP, serum amyloid A3 (SAA3), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB1). Innate immune response was measured by stimulated oxidative burst of polymorphonuclear cells (neutrophils) isolated from blood. Ovalbumin (OVA) was administered with adjuvant on d 7 and 21 RTC, and adaptive immune response was evaluated by serum anti-OVA IgG content on d 28 and 35. Mixed models were used to assess effects of treatment, time, parity, and all interactions. We previously reported that SCFP had limited effects on productivity in this cohort, although milk fat yield was transiently increased and subclinical ketosis incidence was increased. Supplementation with SCFP did not affect overall oxidative, inflammatory, or immune parameters. The only treatment × week interaction detected was for plasma α-tocopherol concentration, which tended to be greater in control cows during wk 2 RTC. A tendency for a treatment × parity interaction was detected for serum anti-OVA IgG titer, which tended to be greater for SCFP than for controls among primiparous cows. Plasma inflammatory biomarkers were not affected by SCFP but, unexpectedly, plasma HP was elevated at both prepartum time points and plasma SAA was elevated during wk −2 RTC compared with the expected increases in both biomarkers postpartum. In this cohort of transition cows with low disease incidence, SCFP generally did not affect oxidative, inflammatory, or immune parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.