Phosphatidylinositol anchors human placental-type alkaline phosphatase (PLAP) to both syncytiotrophoblast and tumour cell plasma membranes. PLAP activity was released from isolated human placental syncytiotrophoblast plasma membranes and the surface of tumour cells with a phospholipase C from Bacillus cereus. This was a specific event, not the result of proteolysis or membrane perturbation, but the action of a phosphatidylinositol-specific phospholipase C in the preparation. Soluble PLAP, released with B. cereus phospholipase C and purified by immunoaffinity chromatography, ran on SDS-PAGE as a 66-kDa band. This corresponded to intact PLAP molecules. The protease bromelain cleaved lower-molecular-mass PLAP (64 kDa) from the membranes. Flow cytometry demonstrated that B. cereus phospholipase C released human tumour cell membrane PLAP in preference to other cell-surface molecules. This was in contrast to the non-specific proteolytic action of bromelain or Clostridium perfringens phospholipase C , which had no effect on membrane PLAP expression. Radiolabelling of tumour cells with fatty acids indicated PLAP to be labelled with both [3H]myristic and [3H]palmitic acid. This fatty-acid -PLAP bond was sensitive to pH 10 hydroxylamine treatment indicating an 0-ester linkage.
The presence of V kappa IIIb light chains in the sera of rheumatoid arthritis (RA) patients has been evaluated by an enzyme-linked immunosorbent assay (ELISA). V kappa IIIb light chains have been confirmed to be largely restricted to IgM, and were rarely detected in the IgG fraction of sera. The concentration of total serum V kappa IIIb did not significantly vary with age, nor did it correlate with IgM-rheumatoid factor (RF) titre. Although total serum V kappa IIIb was not significantly increased in RA patients compared with matched controls, IgM-RFs frequently contained V kappa IIIb. Using flow cytometry, CD5-positive B-cells were not increased in these RA patients compared with healthy laboratory control personnel. Furthermore, there was no direct correlation between total serum IgM V kappa IIIb content and CD5-positive B-cell numbers in peripheral blood.
The effect of polymorphic residues on the A alpha A beta molecule on T cell recognition of the N-terminal nonapeptide of myelin basic protein (R1-9) was determined. Ak-restricted T cell clones recognizing R1-9 were isolated. The peptide-Ia specificities of these clones were determined by testing the response to 1) a panel of peptide analogs of R1-11, 2) splenic APC from mice expressing MHC molecules from serologically distinct haplotypes, and 3) L cell transfectants expressing mutant/recombinant A beta cDNA containing combinations of polymorphic nucleotide sequences from the k and u alleles. Comparisons were made between the Ak-restricted clones and a previously characterized panel of Au-restricted clones. Certain Ak-restricted clones were able to recognize MBP peptide analogs that were not recognized by any of the Au-restricted clones. The Au-restricted T cell clones did not cross-react with R1-9 presented in the context of Ak, whereas the majority of the Ak-restricted clones responded to R1-9 presented in the context of Au. This nonreciprocal cross-reactivity was also reflected in the relative responses of the two sets of T cell clones to the interchange of u- and k-derived residues in the A beta chain. Residues in regions corresponding both the alpha-helical or beta-sheet portions of the hypothetical Ia three-dimensional structure were involved. The results suggest that overall specificity of the T cell clones is the summation of numerous distinct subspecificities for different regions of the peptide-Ia ligand. These results indicate that there can be striking differences in T cell specificity for an autoantigenic epitope, even in the context of A alpha A beta molecules from very closely related haplotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.