Context. Classical supergiant X-ray binaries (SGXBs) and supergiant fast X-ray transients (SFXTs) are two types of high-mass X-ray binaries (HMXBs) that present similar donors but, at the same time, show very different behavior in the X-rays. The reason for this dichotomy of wind-fed HMXBs is still a matter of debate. Among the several explanations that have been proposed, some of them invoke specific stellar wind properties of the donor stars. Only dedicated empiric analysis of the donors' stellar wind can provide the required information to accomplish an adequate test of these theories. However, such analyses are scarce. Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J17544-2619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 ± 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e < 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities ( ∞ = 1500 km s −1 in IGR J17544-2619 and ∞ = 700 km s −1 in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion...
The evolution of young stars and disks is driven by the interplay of several processes, notably the accretion and ejection of material. These processes, critical to correctly describe the conditions of planet formation, are best probed spectroscopically. Between 2020 and 2022, about 500orbits of the Hubble Space Telescope (HST) are being devoted in to the ULLYSES public survey of about 70 low-mass (M⋆ ≤ 2 M⊙) young (age < 10 Myr) stars at UV wavelengths. Here, we present the PENELLOPE Large Program carried out with the ESO Very Large Telescope (VLT) with the aim of acquiring, contemporaneously to the HST, optical ESPRESSO/UVES high-resolution spectra for the purpose of investigating the kinematics of the emitting gas, along with UV-to-NIR X-shooter medium-resolution flux-calibrated spectra to provide the fundamental parameters that HST data alone cannot provide, such as extinction and stellar properties. The data obtained by PENELLOPE have no proprietary time and the fully reduced spectra are being made available to the whole community. Here, we describe the data and the first scientific analysis of the accretion properties for the sample of 13 targets located in the Orion OB1 association and in the σ-Orionis cluster, observed in November–December 2020. We find that the accretion rates are in line with those observed previously in similarly young star-forming regions, with a variability on a timescale of days (≲3). The comparison of the fits to the continuum excess emission obtained with a slab model on the X-shooter spectra and the HST/STIS spectra shows a shortcoming in the X-shooter estimates of ≲10%, which is well within the assumed uncertainty. Its origin can be either due to an erroneous UV extinction curve or to the simplicity of the modeling and, thus, this question will form the basis of the investigation undertaken over the course of the PENELLOPE program. The combined ULLYSES and PENELLOPE data will be key in attaining a better understanding of the accretion and ejection mechanisms in young stars.
NGC 6067 is a young open cluster hosting the largest population of evolved stars among known Milky Way clusters in the 50 -150 Ma age range. It thus represents the best laboratory in our Galaxy to constrain the evolutionary tracks of 5 -7 M stars.We have used high-resolution spectra of a large sample of bright cluster members (45), combined with archival photometry, to obtain accurate parameters for the cluster as well as stellar atmospheric parameters. We derive a distance of 1.78 ± 0.12 kpc, an age of 90 ± 20 Ma and a tidal radius of 14.8 +6.8 −3.2 arcmin. We estimate an initial mass above 5 700 M , for a present-day evolved population of two Cepheids, two A supergiants and 12 red giants with masses ≈ 6 M .We also determine chemical abundances of Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y, and Ba for the red clump stars. We find a supersolar metallicity, [Fe/H]=+0.19±0.05, and a homogeneous chemical composition, consistent with the Galactic metallicity gradient. The presence of a Li-rich red giant, star 276 with A(Li)=2.41, is also detected. An over-abundance of Ba is found, supporting the enhanced s-process.The ratio of yellow to red giants is much smaller than one, in agreement with models with moderate overshooting, but the properties of the cluster Cepheids do not seem consistent with current Padova models for supersolar metallicity.
Star clusters are key to understand the stellar and Galactic evolution. ASCC 123 is a little-studied, nearby and very sparse open cluster. We performed the first high-resolution spectroscopic study of this cluster in the framework of the SPA (Stellar Population Astrophysics) project with GIARPS at the TNG. We observed 17 stars, five of which turned out to be double-lined binaries. Three of the investigated sources were rejected as members on the basis of astrometry and lithium content. For the remaining single stars we derived the stellar parameters, extinction, radial and projected rotational velocities, and chemical abundances for 21 species with atomic number up to 40. From the analysis of single main-sequence stars we found an average extinction AV ≃ 0.13 mag and a median radial velocity of about −5.6 km s −1 . The average metallicity we found for ASCC 123 is [Fe/H]≃ +0.14 ± 0.04, which is in line with that expected for its Galactocentric distance. The chemical composition is compatible with the Galactic trends in the solar neighborhood within the errors. From the lithium abundance and chromospheric Hα emission we found an age similar to that of the Pleiades, which agrees with that inferred from the Hertzsprung-Russell and color-magnitude diagrams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.