A possible consequence of planting genetically modified organisms (GMOs) in centres of crop origin is unintended gene flow into traditional landraces. In 2001, a study reported the presence of the transgenic 35S promoter in maize landraces sampled in 2000 from the Sierra Juarez of Oaxaca, Mexico. Analysis of a large sample taken from the same region in 2003 and 2004 could not confirm the existence of transgenes, thereby casting doubt on the earlier results. These two studies were based on different sampling and analytical procedures and are thus hard to compare. Here, we present new molecular data for this region that confirm the presence of transgenes in three of 23 localities sampled in 2001. Transgene sequences were not detected in samples taken in 2002 from nine localities, while directed samples taken in 2004 from two of the positive 2001 localities were again found to contain transgenic sequences. These findings suggest the persistence or re-introduction of transgenes up until 2004 in this area. We address variability in recombinant sequence detection by analyzing the consistency of current molecular assays. We also present theoretical results on the limitations of estimating the probability of transgene detection in samples taken from landraces. The inclusion of a limited number of female gametes and, more importantly, aggregated transgene distributions may significantly lower detection probabilities. Our analytical and sampling considerations help explain discrepancies among different detection efforts, including the one presented here, and provide considerations for the establishment of monitoring protocols to detect the presence of transgenes among structured populations of landraces.
ObjectivesCurrent models of transgene dispersal focus on gene flow via pollen while neglecting seed, a vital vehicle for gene flow in centers of crop origin and diversity. We analyze the dispersal of maize transgenes via seeds in Mexico, the crop's cradle.MethodsWe use immunoassays (ELISA) to screen for the activity of recombinant proteins in a nationwide sample of farmer seed stocks. We estimate critical parameters of seed population dynamics using household survey data and combine these estimates with analytical results to examine presumed sources and mechanisms of dispersal.ResultsRecombinant proteins Cry1Ab/Ac and CP4/EPSPS were found in 3.1% and 1.8% of samples, respectively. They are most abundant in southeast Mexico but also present in the west-central region. Diffusion of seed and grain imported from the United States might explain the frequency and distribution of transgenes in west-central Mexico but not in the southeast.ConclusionsUnderstanding the potential for transgene survival and dispersal should help design methods to regulate the diffusion of germplasm into local seed stocks. Further research is needed on the interactions between formal and informal seed systems and grain markets in centers of crop origin and diversification.
In 2003, the environmental authorities of the Federal District of Mexico declared that genetically modified organisms were incompatible with ecological agriculture practices established in rural areas south of Mexico City. To ensure compliance with official standards and organic agriculture policies, steps were taken to implement an early warning system for the detection of genetically modified maize in farmers' fields. In our sampling efforts, which were conducted in 2003, transgenic proteins expressed in maize were found in two (0.96%) of 208 samples from farmers' fields, located in two (8%) of 25 sampled communities. Mexico imports a substantial amount of maize from the US, and due to formal and informal seed networks among rural farmers, there are many potential routes of entrance for transgenic maize into food and feed webs. To sustain agroecological practices, preserve organic agriculture, and conserve maize landraces in the Soil Conservation area of the Mexican Federal District, environmental authorities will need to maintain and update ecological policies such as the “green seal” for organic agriculture, apply alternative technologies such as biofertilizers to enhance plant nutrition, and develop sustainable maize agriculture with the implementation of profitable intercropping systems.
(Vice-President and Founder ⁄ CEO, respectively, of Genetic ID, henceforth BS&JF) criticize and dismiss our recent publication in Molecular Ecology by focusing on our use of the Polymerase Chain Reaction (PCR) to detect specific DNA sequences. They raise important questions about the standards required to use PCR in various environmental conditions, pointing to the well-known fact that this delicate method may lead an unskilled operator to false results. They further suggest that our observations of transgenic DNA sequences in Mexican landrace maize should be attributed to false positives, i.e. a type I error. After considering their challenge and reviewing the evidence, we find their arguments seriously lacking in substance, and their practice permissive of false negatives, a type II error.We seem to have attracted BS&JF's attention because, in an effort to corroborate our own results, we utilized the services of Genetic ID as full-paying customers. We established that Genetic ID failed on occasion to detect positive blind samples, which should not be surprising given the known vagaries of the PCR method. Yet for BS&JF this detection failure is not a factual possibility; instead, to explain our observations they would have us both (i) contaminating our samples and (ii) lying about the origin and nature of our materials. Specifically, BS&JF state:
Maize diversity is widespread in Mexico and it has been stewarded by campesinos in small communities until the present. With the arrival of transgenic maize, the objective of this study is to analyze possible scenarios that could result if genetically modified maize were not regulated and openly available in Mexico. By applying a simple logistic model based on the conditions of maize production in Mexico, the dispersion of transgenic maize in different situations within fields of farmers is described. In traditional open systems of freely exchanged seed within communities it is concluded that the most likely outcome of GM maize release is the incorporation of transgenes in the genome of Mexican germplasm and possibly in that of teosinte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.