The aim of study was to investigate the influence of kaolin on the physical properties and utility of film produced from native starch. The work involved measurements of strength, structure, and thermal properties. The films were prepared by the casting method. Composite films with 0%, 5%, 10%, and 15% kaolin additives were examined. Measurements of mechanical properties were carried out using the uniaxial tensile test, the nanoindentation test, and nanoscratching. Surface properties were examined by atomic force microscopy and contact angle measurements. Structure was determined by the X-ray diffraction method, and thermal properties were determined by differential scanning calorimetry. A significant influence of kaolin on the strength parameters and thermal and barrier properties of composite films was found. An increase in kaolin content reduced the tensile strength, Young’s modulus, and Poisson’s ratio. Structural analysis showed a partial intercalation and the layered arrangement of kaolin particles. Kaolin additives increased the barrier properties of water vapor in composite films of about 9%. Biopolymer modification by nanoclay reduced the thermal stability of composite films by 7% and could accelerate the biodegradation process. Increasing the concentration of kaolin in the biopolymer matrix led to heightened surface roughness (approximately 64%) and wettability of the surfaces of the film composites of 58%.
In the presented work the influence of different 3MgO·4SiO2·H2O (talc) contents in polypropylene samples on the structure, hardness, elasticity, and friction of the surface layer was investigated. The talc content ranged from 0 to 25 wt.%, and all the samples were obtained in the same conditions by the injection molding process. The analysis of the microstructure was performed by X-ray diffraction. Changes in the hardness and elasticity were determined for three different depths (300, 800, and 4000 nm) using an ultra nano tester. For the purpose of the examination of the friction properties of the obtained compounds, a nano-scratch tester was applied. Increasing the talc content caused growth in the indentation modulus and hardness values. Simultaneously, an effect of decreasing hardness and elastic modulus with increasing indentation depth was observed. The smallest effect size was observed for 25 wt.% talc content, which might suggest that talc addition increased the homogeneity of the observed composites. Scratch tests showed increasing scratch resistance along with increasing talc content for both constant and progressive loads. The growth in talc concentration led to a decrease in the degree of the polypropylene (PP) crystallinity of the surface layer. The exfoliation process occurred in PP composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.