The cellular generation and spatial distribution of gamma frequency (40– 100 Hz) activity was examined in the hippocampus of the awake rat. Field potentials and unit activity were recorded by multiple site silicon probes (5- and 16-site shanks) and wire electrode arrays. Gamma waves were highly coherent along the long axis of the dentate hilus, but average coherence decreased rapidly in the CA3 and CA1 directions. Analysis of short epochs revealed large fluctuations in coherence values between the dentate and CA1 gamma waves. Current source density analysis revealed large sinks and sources in the dentate gyrus with spatial distribution similar to the dipoles evoked by stimulation of the perforant path. The frequency changes of gamma and theta waves positively correlated (40–100 Hz and 5–10 Hz, respectively). Putative interneurons in the dentate gyrus discharged at gamma frequency and were phase-locked to the ascending part of the gamma waves recorded from the hilus. Following bilateral lesion of the entorhinal cortex the power and frequency of hilar gamma activity significantly decreased or disappeared. Instead, a large amplitude but slower gamma pattern (25–50 Hz) emerged in the CA3-CA1 network. We suggest that gamma oscillation emerges from an interaction between intrinsic oscillatory properties of interneurons and the network properties of the dentate gyrus. We also hypothesize that under physiological conditions the hilar gamma oscillation may be entrained by the entorhinal rhythm and that gamma oscillation in the CA3-CA1 circuitry is suppressed by either the hilar region or the entorhinal cortex.
Pyramidal cells in the CA1 hippocampal region displayed transient network oscillations (200 hertz) during behavioral immobility, consummatory behaviors, and slow-wave sleep. Simultaneous, multisite recordings revealed temporal and spatial coherence of neuronal activity during population oscillations. Participating pyramidal cells discharged at a rate lower than the frequency of the population oscillation, and their action potentials were phase locked to the negative phase of the simultaneously recorded oscillatory field potentials. In contrast, interneurons discharged at population frequency during the field oscillations. Thus, synchronous output of cooperating CA1 pyramidal cells may serve to induce synaptic enhancement in target structures of the hippocampus.
The interface between micromachined neural microelectrodes and neural tissue plays an important role in chronic in vivo recording. Electrochemical polymerization was used to optimize the surface of the metal electrode sites. Electrically conductive polymers (polypyrrole) combined with biomolecules having cell adhesion functionality were deposited with great precision onto microelectrode sites of neural probes. The biomolecules used were a silk-like polymer having fibronectin fragments (SLPF) and nonapeptide CDPGYIGSR. The existence of protein polymers and peptides in the coatings was confirmed by reflective microfocusing Fourier transform infrared spectroscopy (FTIR). The morphology of the coating was rough and fuzzy, providing a high density of bioactive sites for interaction with neural cells. This high interfacial area also helped to lower the impedance of the electrode site and, consequently, to improve the signal transport. Impedance spectroscopy showed a lowered magnitude and phase of impedance around the biologically relevant frequency of 1 kHz. Cyclic voltammetry demonstrated the intrinsic redox reaction of the doped polypyrrole and the increased charge capacity of the coated electrodes. Rat glial cells and human neuroblastoma cells were seeded and cultured on neural probes with coated and uncoated electrodes. Glial cells appeared to attach better to polypyrrole/SLPF-coated electrodes than to uncoated gold electrodes. Neuroblastoma cells grew preferentially on and around the polypyrrole/CDPGYIGSR-coated electrode sites while the polypyrrole/CH(3)COO(-)-coated sites on the same probe did not show a preferential attraction to the cells. These results indicate that we can adjust the chemical composition, morphology, electronic transport, and bioactivity of polymer coatings on electrode surfaces on a multichannel micromachined neural probe by controlling electrochemical deposition conditions.
An important aspect of the development of cortical prostheses is the enhancement of suitable implantable microelectrode arrays for chronic neural recording. The objective of this study was to investigate the recording performance of silicon-substrate micromachined probes in terms of reliability and signal quality. These probes were found to consistently and reliably provide high-quality spike recordings over extended periods of time lasting up to 127 days. In a consecutive series of ten rodents involving 14 implanted probes, 13/14 (93%) of the devices remained functional throughout the assessment period. More than 90% of the probe sites consistently recorded spike activity with signal-to-noise ratios sufficient for amplitudes and waveform-based discrimination. Histological analysis of the tissue surrounding the probes generally indicated the development of a stable interface sufficient for sustained electrical contact. The results of this study demonstrate that these planar silicon probes are suitable for long-term recording in the cerebral cortex and provide an effective platform technology foundation for microscale intracortical neural interfaces for use in humans.
This paper describes the development of a high-density electronic interface to the central nervous system. Silicon micromachined electrode arrays now permit the long-term monitoring of neural activity in vivo as well as the insertion of electronic signals into neural networks at the cellular level. Efforts to understand and engineer the biology of the implant/tissue interface are also underway. These electrode arrays are facilitating significant advances in our understanding of the nervous system, and merged with on-chip circuitry, signal processing, microfluidics, and wireless interfaces, they are forming the basis for a family of neural prostheses for the possible treatment of disorders such as blindness, deafness, paralysis, severe epilepsy, and Parkinson's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.