The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation γ-ray spectrometer. AGATA is based on the technique of γ-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a γ ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of γ-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer
Article:Bree, N., Wrzosek-Lipska, K., Petts, A. et al. (67 more authors) (2014) Shape coexistence in the neutron-deficient even-even 182-188Hg isotopes studied via Coulomb excitation.
We propose to install a storage ring at an ISOL-type radioactive beam facility for the first time. Specifically, we intend to install the heavy-ion, low-energy ring TSR at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored secondary beams that is unique in the world. The envisaged physics programme is rich and varied, spanning from investigations of nuclear groundstate properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. The TSR can also be used to remove isobaric contaminants from stored ion beams and for systematic studies within the neutrino beam programme. In addition to experiments performed using beams recirculating within the ring, cooled beams can also be extracted and exploited by external spectrometers for high-precision measurements. The existing TSR, which is presently in operation at the Max-Planck Institute for Nuclear Physics in Heidelberg, is well-suited and can be employed for this purpose. The physics cases, technical details of the existing ring facility and of the beam requirements at HIE-ISOLDE, together with the cost, time and manpower estimates for the transfer, installation and commissioning of the TSR at ISOLDE are discussed in the present technical design report.
Elastic constants of single crystals of yttria-stabilized zirconia were determined through the temperature range 20" to 700°C. Crystals containing 8.1, 11.1, 12.1, 15.5, and 17.9 mol% YzO3 were measured. The elastic constant CI1 was found to decrease and CI2 and C, to increase with increasing YzO, content; this appears to be due to decreasing coulombic interaction as Y" replaces Zr"'. Except for the 8.1 mol% Y203 crystal, the conventional elastic constants all showed normal monotonic decreases with increasing temperature. In the case of the 8.1 mol% YzO, crystal, measurements as a function of temperature were not reproducible, and it is likely that this composition at room temperature is below the composition limit of thermodynamic stability of the cubic fluorite phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.