This paper presents a comparative study of four different approaches to automatic age and gender classification using seven classes on a telephony speech task and also compares the results with Human performance on the same data. The automatic approaches compared are based on (1) a parallel phone recognizer, derived from an automatic language identification system; (2) a system using dynamic Bayesian networks to combine several prosodic features; (3) a system based solely on linear prediction analysis; and (4) Gaussian mixture models based on MFCCs for separate recognition of age and gender. On average, the parallel phone recognizer performs as well as Human listeners do, while loosing performance on short utterances. The system based on prosodic features however shows very little dependence on the length of the utterance.
This paper compares two approaches of automatic age and gender classification with 7 classes. The first approach are Gaussian Mixture Models (GMMs) with Universal Background Models (UBMs), which is well known for the task of speaker identification/verification. The training is performed by the EM algorithm or MAP adaptation respectively. For the second approach for each speaker of the test and training set a GMM model is trained. The means of each model are extracted and concatenated, which results in a GMM supervector for each speaker. These supervectors are then used in a support vector machine (SVM). Three different kernels were employed for the SVM approach: a polynomial kernel (with different polynomials), an RBF kernel and a linear GMM distance kernel, based on the KL divergence. With the SVM approach we improved the recognition rate to 74% (p < 0.001) and are in the same range as humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.