Recently, in the field of structural health monitoring, the detection of bolted connection looseness through percussion-based method and machine learning technology has received much attention due to the advantages of removing the requirement of sensor installation and potential for automation. However, there are few such research which are performed in the underwater environment. The paper proposes a new method, Feature-reduced Multiple Random Convolution Kernel Transform (FM-ROCKET), to identify the looseness level of the underwater bolted connections based on the percussion-induced sound (audio signal). By integrating deep learning (DL) and shallow learning, the FM-ROCKET model uses the 1D convolutional layer (a DL method) to extract features from the percussion-induced audio signal and adopts the rigid classifier (linear classifier, a shallow learning method) to classify the features. Five different preload levels of the bolted flange are considered. A hammer is utilized to tap the flange surface and the continuous percussion-induced audio signal is collected by a smartphone in an underwater environment. After the audio signal segmentation, single-hit audio signals are fed into the FM-ROCKET model. To verify the effectiveness of the proposed method, three case studies are conducted on two flanges. In case study I, the proposed method slightly outperforms other DL-based methods under different training/test splitting ratios. In case studies II and III, the proposed method is far more effective than other DL-based methods on independent and different test sets. The results demonstrate the superiority of the FM-ROCKET model in the underwater detection of bolted flange looseness. To the best of our knowledge, this article is the first attempt to address the detection of bolted flange looseness in the underwater environment by combining percussion-based method, DL, and shallow learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.