The extracellular polysaccharide polymers can bind microbes to surfaces and can cause physical modification of the microenvironment. Since uronic acids appear to be the components of these extracellular films that are most concentrated in a location outside the cell membrane, a quantitative assay for uronic acids was developed. Polymers containing uronic acids are resistant to quantitative hydrolysis, and the uronic acids, once released, form lactones irreproducibly and are difficult to separate from the neutral sugars. These problems were obviated by the methylation of the uronic acids and their subsequent reduction with sodium borodeuteride to the corresponding alcohol while they were in the polymer and could not form lactones. This caused the polymers to lose the ability to adhere to their substrates, so they could be quantitatively recovered. The hydrolysis of the dideuterated sugars was reproducible and could be performed under conditions that were mild enough that other cellular and extracellular polymers were not affected. The resulting neutral sugars were readily derivatized and then were separated and assayed by glass capillary gas-liquid chromatography. The dideuterated portion of each pentose, hexose, or heptose, identified by combined capillary gas-liquid chromatography and mass spectrometry, accurately provided the proportion of each uronic acid in each carbohydrate of the polymer. Examples of the applications of this methodology include the composition of extracellular polymers in marine bacteria, invertebrate feeding tubes and fecal structures, and the microfouling films formed on titanium and aluminum surfaces exposed to seawater.
Biochemical measures have provided insight into the biomass and community structure of sedimentary microbiota without the requirement of selection by growth or quantitative removal from the sediment grains. This study used the assay of the hydroxy fatty acids released from the lipid A of the lipopolysaccharide in sediments to provide an estimate of the gram-negative bacteria. The method was sensitive to picomolar amounts of hydroxy fatty acids. The recovery of lipopolysaccharide hydroxy fatty acids from organisms added to sediments was quantitative. The lipids were extracted from the sediments with a single-phase chloroform-methanol extraction. The lipid-extracted residue was hydrolyzed in 1 N HCI, and the hydroxy fatty acids of the lipopolysaccharide were recovered in chloroform for analysis by gas-liquid chromatography. This method proved to be about fivefold more sensitive than the classical phenol-water or trichloroacetic acid methods when applied to marine sediments. By examination of the patterns of hydroxy fatty acids, it was also possible to help define the community structure of the sedimentary gram-negative bacteria. Biochemical methods have proved to be very useful in assessing the microbial biomass of sediments (10, 18, 29, 32). These methods are not dependent upon growth of the organisms for assay or on the quantitative removal of organisms from the sediments (10, 19). Estimations of the total cellular biomass are readily made from the extractable phospholipid (32). The procaryotic biomass can be unequivocally estimated from the muramic acid (10; R. H. Findlay, D. J. W. Moriarty, and D. C. White, Geomicrobiology J., in press). To translate the muramic acid content into cellular carbon, the proportion of cyanophytes, gram-negative, and gram-positive bacteria must be known (10, 18). The pro-MATERIALS AND METHODS Materials. Glass-distilled solvents (Burdick and Jackson, Muskegon, Mich.), freshly distilled chloroform, and derivatizing agents from Pierce Chemical
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.