Proton therapy is a precise forms of radiation therapy that makes use of high energy proton compared to the conventional, more commonly used and less precise x-ray and electron beams. On the other hand, to fully exploit the proton therapy advantages, very accurate quality controls of the treatments are required. These are mainly related to the dose calculations and treatment planning. Actually dose calculations are routinely performed on the basis of X-Ray computed tomography while a big improvement could be obtained with the direct use of protons as the imaging system.In this work we report the results of Monte Carlo simulations for the study of an imaging system based on the use of high energy protons: the proton Computed Tomography (pCT). The main limitation of the pCT and the current adopted technical solutions, based on the use of the Most Likely Path (MLP) approximation are illustrated. Simulation results are compared with experimental data obtained with a first prototype of pCT system tested with 200 MeV proton beams available at the Loma Linda University Medical Center (LLUMC) (CA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.