Nearly a century ago it was recognized that radiation absorption by stellar matter controls the internal temperature profiles within stars. Laboratory opacity measurements, however, have never been performed at stellar interior conditions, introducing uncertainties in stellar models. A particular problem arose when refined photosphere spectral analysis led to reductions of 30-50 per cent in the inferred amounts of carbon, nitrogen and oxygen in the Sun. Standard solar models using the revised element abundances disagree with helioseismic observations that determine the internal solar structure using acoustic oscillations. This could be resolved if the true mean opacity for the solar interior matter were roughly 15 per cent higher than predicted, because increased opacity compensates for the decreased element abundances. Iron accounts for a quarter of the total opacity at the solar radiation/convection zone boundary. Here we report measurements of wavelength-resolved iron opacity at electron temperatures of 1.9-2.3 million kelvin and electron densities of (0.7-4.0) × 10(22) per cubic centimetre, conditions very similar to those in the solar region that affects the discrepancy the most: the radiation/convection zone boundary. The measured wavelength-dependent opacity is 30-400 per cent higher than predicted. This represents roughly half the change in the mean opacity needed to resolve the solar discrepancy, even though iron is only one of many elements that contribute to opacity.
HELIOS-CR is a user-oriented 1-D radiation-magnetohydrodynamics code to simulate the dynamic evolution of laser-produced plasmas and z-pinch plasmas. It includes an in-line collisionalradiative (CR) model for computing non-LTE atomic level populations at each time step of the hydrodynamics simulation. HELIOS-CR has been designed for ease of use, and is well-suited for experimentalists, as well as graduate and undergraduate student researchers. The energy equations employed include models for laser energy deposition, radiation from external sources, and high-current discharges. Radiative transport can be calculated using either a multi-frequency flux-limited diffusion model, or a multi-frequency, multi-angle short characteristics model. HELIOS-CR supports the use of SESAME equation of state (EOS) tables, PROPACEOS EOS/multi-group opacity data tables, and non-LTE plasma properties computed using the inline CR modeling. Time-, space-, and frequency-dependent results from HELIOS-CR calculations are readily displayed with the HydroPLOT graphics tool. In addition, the results of HELIOS simulations can be post-processed using the SPECT3D Imaging and Spectral Analysis Suite to generate images and spectra that can be directly compared with experimental measurements. The HELIOS-CR package runs on Windows, Linux, and Mac OSX platforms, and includes online documentation. We will discuss the major features of HELIOS-CR, and present example results from simulations.
We report on a 67 ks High-Energy Transmission Grating observation of the optically brightest early O star z Puppis (O4 f). Many resolved X-ray lines are seen in the spectra over a wavelength range of 5-25 Å . Chandra has sufficient spectral resolution to study the velocity structure of isolated X-ray line profiles and to distinguish the individual forbidden, intercombination, and resonance (fir) emission lines in several He-like ions, even where the individual components are strongly Doppler-broadened. In contrast to X-ray line profiles in other hot stars, z Pup shows blueshifted and skewed line profiles, providing the clearest and most direct evidence that the Xray sources are embedded in the stellar wind. The broader the line, the greater the blueward centroid shift tends to be. The N vii line at 24.78 Å is a special case, showing a flat-topped profile. This indicates that it is formed in regions beyond most of the wind attenuation. The sensitivity of the He-like ion fir lines to a strong UV radiation field is used to derive the radial distances at which lines of S xv, Si xiii, Mg xi, Ne ix, and O vii originate. The formation radii correspond well with a continuum optical depth of unity at the wavelength of each line complex, indicating that the X-ray line emission is distributed throughout the stellar wind. However, the S xv emission lines form deeper in the wind than expected from standard wind-shock models.
Measurements of iron-plasma transmission at 156+/-6 eV electron temperature and 6.9+/-1.7 x 10(21) cm(-3) electron density are reported over the 800-1800 eV photon energy range. The temperature is more than twice that in prior experiments, permitting the first direct experimental tests of absorption features critical for understanding solar interior radiation transport. Detailed line-by-line opacity models are in excellent agreement with the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.