The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km. The measurement is based on data taken by OPERA in the years 2009, 2010 and 2011. Dedicated upgrades of the CNGS timing system and of the OPERA detector, as well as a high precision geodesy campaign for the measurement of the neutrino baseline, allowed reaching comparable systematic and statistical accuracies.An arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of (6.5 ± 7.4 (stat.) +8.3 −8.0 (sys.)) ns was measured corresponding to a relative difference of the muon neutrino velocity with respect to the speed of light (v − c)/c = (2.7 ± 3.1 (stat.) +3.4 −3.3 (sys.)) × 10 −6 . The above result, obtained by comparing the time distributions of neutrino interactions and of protons hitting the CNGS target in 10.5 µs long extractions, was confirmed by a test performed at the end of 2011 using a short bunch beam allowing to measure the neutrino time of flight at the single interaction level.
After completion of the data taking for the v(mu) -> v(tau) oscillation search, the CHORUS lead-scintillator calorimeter was used in the 1998 run as an active target. High-statistics samples of charged-current interactions were collected in the CERN SPS west area neutrino beam. This beam contained predominantly muon (anti-)neutrinos from sign-selected pious and kaons. We measure the flux and energy spectrum of the incident neutrinos and compare them with beam simulations. The neutrino-nucleon and anti-neutrino-nucleon differential cross-sections are measured in the range 0.01 < x < 0.7, 0.05 < y < 0.95, 10 < E-v < 200 GeV. We extract the neutrino-nucleon structure functions F-2(x, Q(2)), xF(3) (x, Q(2)), and R(x, Q2) and compare these with results from other experiments. (c) 2005 Elsevier B.V. All rights reserved
SummaryDuring development, axons spontaneously assemble into a fascicle to form nerves and tracts in the nervous system as they extend within a spatially constrained path. However, understanding of the axonal fascicle has been hampered by lack of an in vitro model system. Here, we report generation of a nerve organoid composed of a robust fascicle of axons extended from a spheroid of human stem cell-derived motor neurons within our custom-designed microdevice. The device is equipped with a narrow channel providing a microenvironment that facilitates the growing axons to spontaneously assemble into a unidirectional fascicle. The fascicle was specifically made with axons. We found that it was electrically active and elastic and could serve as a model to evaluate degeneration of axons in vitro. This nerve organoid model should facilitate future studies on the development of the axonal fascicle and drug screening for diseases affecting axon fascicles.
The nuclear emulsion target of the CHORUS detector was exposed to the wide-band neutrino beam of the CERN SPS of 27 GeV average neutrino energy from 1994 to 1997. In total about 100000 charged-current neutrino interactions with at least one identified muon were located in the emulsion target and fully reconstructed, using newly developed automated scanning systems. Charmed particles were searched for by a program recognizing particle decays. The observation of the decay in nuclear emulsion makes it possible to select a sample with very low background and minimal kinematical bias. 2013 charged-current interactions with a charmed hadron candidate in the final state were selected and confirmed through visual inspection. The charm production rate induced by neutrinos relative to the charged-current cross-section is measured to be σ(ν µ N → µ − CX)/σ(CC) = (5.75 ± 0.32(stat) ± 0.30(syst))%. The charm production cross-section as a function of the neutrino energy is also obtained. The results are in good agreement with previous measurements. The charm-quark hadronization produces the following charmed hadrons with relative fractions (in %): f D 0 = 43.7 ± 4.5, f Λ + c = 19.2 ± 4.2, f D + = 25.3 ± 4.2, and f D + s = 11.8 ± 4.7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.