We propose an efficient circuit placement approach based on analytic net weighting controls for nonlinear performance constraints. We justify the popular net weighting heuristic by first showing that an appropriate net weighting is a natural result of the Kuhn-Tucker conditions of circuit placement optimization subject to the performance constraints. We further give a quantitative analysis of the effect of net weighting to wire length change. An effective net weighting control algorithm has been implemented and applied to real chip designs. The results are very promising. A performance-optimized result can be achieved in 13.2 seconds for a chip with 1,403 circuits. An experimental CMOS chip with 45,296 circuits has a complete placement result in 40 minutes while the wire length measure is 20.3 percent better than a simulated annealing approach.
As chip size and design density increase, coupling effects (crosstalk) between signal wires become increasingly critical to on-chip timing and even functionality. A method is presented to analyze crosstalk while taking into account timing relationship and timing criticality between coupling wires. The method is based upon the geometrical layout of the wires (adjacency), the signal slopes on the wires (circuit driving capability) and timing considerations. Based on these wire characteristics, a pattern driven routing tool imbeds the crosstalk critical nets in non-adjacent wiring tracks for crosstalk avoidance. The pattern driven routing capability may also be used for rerouting crosstalk critical nets of an already existing routing for crosstalk reduction. The crosstalk analysis and the routing tool described in this paper were used in three generations of VLSI processor chip designs for IBM's S/390 computers, always resulting in crosstalk-resistant hardware.
In nanometer technologies the importance of opens as yield detractors considerably increases. This requires to reconsider traditional tree based routing approaches for signal wiring. We propose a Greedy Minimum Routing Tree Augmentation (GMRTA) algorithm that shows significantly better results than previous approaches. The algorithm adds links to routing trees, thus increases its robustness against open defects. By exploiting that edges in multiple loops can be removed the augmentation efficiency is further improved. As a special feature, our algorithm keeps timing constraints which have not been considered by previous GMRTA algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.