This paper describes a method of multiplexing several optical signals onto a single spatial channel (e.g., a single-mode fiber) using a short coherence length continuous wave light source. Several system configurations which utilize this technique are proposed, and some design considerations are discussed. Experimental results for a single sensor and receiver are presented and compared with theoretical predictions.
When a single-mode fiber is used at a wavelength below the cutoff wavelength, the fiber guides second-order modes, which travel at different phase velocities from the fundamental mode. Periodically stressing this two-mode fiber once per beat length can cause coherent coupling between the modes. Such a modal coupler has been developed and is described here. Coupling to one of the second-order modes has been achieved, leaving less than -40-dB residual power in the fundamental mode. Two couplers have been mounted on a single strand of fiber to construct a Mach-Zehnder interferometer with better than a 30-dB on/off ratio. The coupler is polarization sensitive and can be used as an in-line polarizer. A 36-dB extinction ratio between polarizations has been observed.
Periodically stressing a birefringent fiber once per beat length can cause coherent coupling to occur between polarization modes. Such a birefringent-fiber polarization coupler is described here. More than 30 dB of power transfer between polarizations has been achieved. The device has been used as the output coupler of an in-line Mach-Zehnder interferometer, and better than 25-dB on/off extinction has been measured. The device is wavelength selective and can be used as a multiplexer or as a notch filter. A notch of 9-nm full width at half-maximum has been achieved with a 60-period comb structure.
This paper describes and analyzes a particular application of high duty-cycle time-division multiplexing to the separation and identification of signals from an interferometric sensor array. Using the method discussed here, the coherence length of the laser is no longer a severe design constraint. Also, the source phase-induced intensity noise which limits some other multiplexing methods may be overcome, leading to a higher sensitivity. The arrays of all-passive remote sensors exhibit minimal crosstalk between sensors, and have downlead insensitivity. A synthetic heterodyne demodulation technique prevents environmentally induced signal fading. Analysis includes coupling ratios for all directional couplers in the system, signal and noise spectra, minimum detectable phase shift, and the effect of ac coupling on noise and crosstalk. An experimental all-fiber implementation of a two sensor array has yielded a measured sensitivity of approximately 10 prad/& over a range of signal frequencies, and a crosstalk level of better than 55 dB. 0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.