Summary
1.The aim was to assess the extent to which the microbial biomass and activity, and community structure of fertilized upland grasslands are directly related to changes in soil N availability or indirectly related to individual plant species effects caused by changes in plant species composition and dominance. We investigated the short-term interactive effects of dominant plant species (Lolium perenne, Agrostis capillaris, Holcus lanatus and Festuca rubra) and nitrogen (N) amendment using an N-limited upland grassland soil. 2. In soils planted with different grass species, soil microbial biomass, and to some extent microbial activity, were determined by temporal changes in plant productivity. Variations in the way that individual plants influenced soil microbial biomass and activity were highly inconsistent over time, and largely independent of N-additions and differences in plant productivity. At the final sample date, those grass species which co-dominate the total plant biomass of intermediate fertility (H. lanatus) and semi-improved grasslands (A. capillaris and F. rubra) had a beneficial effect on the soil microbial biomass. In contrast, the dominant plant species of improved grasslands, L. perenne, had zero or a negative effect on soil microbial biomass. Two plant species (A. capillaris and H. lanatus) increased the proportion of fungi relative to bacteria in the soil microbial community, relative to the unplanted control soil and the other plant species. Lolium perenne and A. capillaris reduced the evenness of microbial PLFAs, suggesting negative effects of these plant species on the diversity of the soil microbial community. 3. The addition of N had no consistent effect on measures of soil microbial biomass or activity, but significantly altered the structure of the microbial community in favour of fungi. The lack of effects of N-addition on microbial biomass and activity were despite the finding that nitrogen addition reduced root biomass in all plant species and increased rhizosphere acidity. 4. The results suggest that in the short term, the abundance and activity of soil microorganisms in upland grasslands are regulated more by plant species traits than by a direct effect of nitrogen. These effects are likely to be related to variations amongst plant species in root exudation patterns and/or efficiency of nutrient aquisition. 5. Our study provides evidence that the functional characteristics of dominant plant species are important determinants of soil biological properties, and hence ecosystem functioning in temperate upland grasslands.
Streptococcus pneumoniae colonizes the nasopharynx in up to 40% of healthy subjects, and is a leading cause of middle ear infections (otitis media), meningitis and pneumonia. Pneumococci adhere to glycosidic receptors on epithelial cells and to immobilized fibronectin, but the bacterial adhesins mediating these reactions are largely uncharacterized. In this report we describe a novel pneumococcal protein PavA, which binds fibronectin and is associated with pneumococcal adhesion and virulence. The pavA gene, present in 64 independent isolates of S. pneumoniae tested, encodes a 551 amino acid residue polypeptide with 67% identical amino acid sequence to Fbp54 protein in Streptococcus pyogenes. PavA localized to the pneumococcal cell outer surface, as demonstrated by immunoelectron microscopy, despite lack of conventional secretory or cell‐surface anchorage signals within the primary sequence. Full‐length recombinant PavA polypeptide bound to immobilized human fibronectin in preference to fluid‐phase fibronectin, in a heparin‐sensitive interaction, and blocked binding of wild‐type pneumococcal cells to fibronectin. However, a C‐terminally truncated PavA′ polypeptide (362 aa residues) failed to bind fibronectin or block pneumococcal cell adhesion. Expression of pavA in Enterococcus faecalis JH2–2 conferred > sixfold increased cell adhesion levels to fibronectin over control JH2–2 cells. Isogenic mutants of S. pneumoniae, either abrogated in PavA expression or producing a 42 kDa C‐terminally truncated protein, showed up to 50% reduced binding to immobilized fibronectin. Inactivation of pavA had no effects on growth rate, cell morphology, cell‐surface physico‐chemical properties, production of pneumolysin, autolysin, or surface proteins PspA and PsaA. Isogenic pavA mutants of encapsulated S. pneumoniae D39 were approximately 104‐fold attenuated in virulence in the mouse sepsis model. These results provide evidence that PavA fibronectin‐binding protein plays a direct role in the pathogenesis of pneumococcal infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.