The objective of this experiment was to find out the effect of lemon leaves on energy and C-N balances, methane emission, and milk performance in dairy goats. Lemon leaves were used to replace alfalfa as forage in a diet for Murciano-Granadina goats. Ten Murciano-Granadina dairy goats (44.1 ± 4.47 kg of BW) in late lactation (185 ± 7.2 d) were selected in a crossover design experiment, where each goat received 2 treatments in 2 periods. One group was fed a mixed ration with 450 g of pelleted alfalfa per kilogram of DM (ALF diet) and, the other group replaced alfalfa with 450 g of pelleted lemon leaves per kilogram DM (LEM diet). The concentrate was pelleted, being the same for the two groups (forage to concentrate ratio was 45/55). The goats were allocated to individual metabolism cages. After 14 d of adaptation, feed intake, total fecal and urine output, and milk yield were recorded daily over a 5-d period. Then, gas exchange measurements were recorded individually by an open-circuit indirect calorimetry system using a head box. Higher dietary lipids in LEM diet reduced DMI (200 g/d) and energy intake (251 kJ/kg of BW0.75), although no differences between treatments were observed for ME intake (998 kJ/kg of BW0.75, on average) and oxidation of nutrients (64% and 25% for carbohydrates and fat oxidation, respectively, on heat production from oxidation basis). Greater (P < 0.05) milk fat values for C18:2n6t and CLA 9c11t + 9t11c were found in LEM compared with ALF diet. Goats fed LEM diet produced significantly fewer CH4 emissions than ALF diet (18%). Likewise, the use of lemon leaves as forage reduced the amount of CH4 in 2.7 g/kg of milk. Results suggest that lemon leaves are effective in reducing CH4 emission without detrimental effect on milk yield.
In dairy goats, the low average daily gain and the high conversion ratio for milk and concentrate of the kids mean that their sale price does not offset the costs generated. The hypothesis proposes that a crossbreeding of the Murciano-Granadina breed (MG) with the Boer breed (MG×Boer) will improve the profitability of the kids sold. Thus, the effect of two different groups of kids (purebred MG and crossbred MG×Boer) on birth weight (BW), mortality, average daily gain (ADG), the time for minimum slaughter weight (7 kg) and its variation factors were studied. MG×Boer kids had a 27% greater BW than purebred MG kids (2885 ± 84 g and 2275 ± 74 g, respectively), similar ADG (156 ± 6 g and 142 ± 6 g, respectively) and mortality (18% and 20%, respectively), and reached minimum slaughter weight a week sooner. ADG was less and less as the lactation period progressed due to a lower milk consumption and milk energy value, which highlights the importance of providing a concentrate that will compensate for this reduced energy content. In conclusion, the results show that MG×Boer crossbred kids reached the minimum slaughter weight a week earlier than purebred MG kids, and highlighted the improvement of farm profitability through the increase of milk sold and the need to provide a concentrate feed to enhance the growth of the kids.
In dairy goats, the kid rearing system can have critical importance in financial returns. Commonly used criteria for the choice of rearing system are not always clear due to the high number of factors involved. The aim of this study was to quantify all those factors to facilitate decision making. So, the effect of two different kid rearing systems, mixed rearing system (MRS) and artificial rearing system (ARS), on milk yield, milk composition and somatic cell count (SCC), milk yield loss at weaning for MRS, kid growth and costs of the different traits on the financial returns in Murciano-Granadina breed goats was studied. Twenty-four goats per group were used. In the MRS, goats reared only one kid, which had free access to goat milk 24 h a day and were weaned at week 6 of lactation, whereas kids in the ARS were separated from their mothers at kidding, colostrum and artificially reared. In both systems, dams were machine-milked once a day throughout lactation and the records took place weekly. Potential milk yield was estimated according to the oxytocin method up to week 12 of lactation, and was similar for both rearing systems, although a 12.3% drop in potential milk yield at weaning was observed for MRS. During the first 6 weeks of lactation, marketable milk was lower for dams in MRS compared to those in ARS (72.1 v. 113.0 l), but similar for the rest of the experiment (101.5 v. 99.4 l, respectively). Marketable milk composition and SCC throughout the 12 weeks of lactation were unaffected by the rearing system. Artificial rearing system entailed an increment in production cost of 22.2€ per kid compared to the rearing by MRS. A similar economic return per goat and kid was obtained from ARS and MRS in this experiment, although, due to one herd’s prolificacy of 1.8, the actual results would be 16.2€ per goat in favour of MRS. The real interest of this experiment may be the possibility of extrapolation to different flocks with diverse levels of milk production, prolificacy and prices and costs for incomes and outputs, to estimate the production system that increases returns. In conclusion, the results showed an increase in the cost of €22.2 per kid bred in the ARS, compared to the MRS, and a final return of 16.2€ per goat in favour of the mixed system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.