This study presents the first multidecadal climatology of cutoff low systems in the Northern Hemisphere. The climatology was constructed by using 41 yr of NCEP-NCAR reanalysis data and identifying cutoff lows by means of an objective method based on imposing the three main physical characteristics of the conceptual model of cutoff low (the 200-hPa geopotential minimum, cutoff circulation, and the specific structure of both equivalent thickness and thermal front parameter fields).Several results were confirmed and climatologically validated: 1) the existence of three preferred areas of cutoff low occurrence (the first one extends through southern Europe and the eastern Atlantic coast, the second one is the eastern North Pacific, and the third one is the northern China-Siberian region extending to the northwestern Pacific coast; the European area is the most favored region); 2) the known seasonal cycle, with cutoff lows forming much more frequently in summer than in winter; 3) the short lifetime of cutoff lows, most cutoff lows lasted 2-3 days and very few lasted more than 5 days; and 4) the mobility of the system, with few cutoff lows being stationary. Furthermore, the long study period has made it possible (i) to find a bimodal distribution in the geographical density of cutoff lows for the European sector in all the seasons (with the exception of winter), a summer displacement to the ocean in the American region, and a summer extension to the continent in the Asian region, and (ii) to detect northward and westward motion especially in the transitions from the second to third day of occurrence and from the third to fourth day of occurrence.The long-term cutoff low database built in this study is appropriate to study the interannual variability of cutoff low occurrence and the links between cutoff lows and jet stream systems, blocking, or major modes of climate variability as well as the global importance of cutoff low in the stratosphere-troposphere exchange mechanism, which will be the focus of a subsequent paper.
DAURE (Determination of the Sources of Atmospheric Aerosols in Urban and Rural Environments in the Western Mediterranean) was a multidisciplinary international field campaign aimed at investigating the sources and meteorological controls of particulate matter in the Western Mediterranean Basin (WMB). Measurements were simultaneously performed at an urban-coastal (Barcelona, BCN) and a rural-elevated (Montseny, MSY) site pair in NE Spain during winter and summer. State-of-the-art methods such as 14 C analysis, proton-transfer reaction mass spectrometry, and high-resolution aerosol mass spectrometry were applied for the first time in the WMB as part of DAURE. WMB regional pollution episodes were associated with high concentrations of inorganic and organic species formed during the transport to inland areas and built up at regional scales. Winter pollutants accumulation depended on the degree of regional stagnation of an air mass under anticyclonic conditions and the planetary boundary layer height. In summer, regional recirculation and biogenic secondary organic aerosols (SOA) formation mainly determined the regional pollutant concentrations. The contribution from fossil sources to organic carbon (OC) and elemental carbon (EC) and hydrocarbon-like organic aerosol concentrations were higher at BCN compared with MSY due to traffic emissions. The relative contribution of nonfossil OC was higher at MSY especially in summer due to biogenic emissions. The fossil OC/EC ratio at MSY was twice the corresponding ratio at BCN indicating that a substantial fraction of fossil OC was due to fossil SOA. In winter, BCN cooking emissions were identified as an important source of modern carbon in primary organic aerosol.
[1] In July 2002 the VELETA-2002 field campaign was held in Sierra Nevada (Granada) in the south of Spain. The main objectives of this field campaign were the study of the influence of elevation and atmospheric aerosols on measured UV radiation. In the first stage of the field campaign, a common calibration and intercomparison between Licor-1800 spectroradiometers and Cimel-318 Sun photometers was performed in order to assess the quality of the measurements from the whole campaign. The intercomparison of the Licor spectroradiometers showed, for both direct and global irradiances, that when the comparisons were restricted to the visible part of the spectrum the deviations were within the instruments' nominal accuracies which allows us to rely on these instruments for measuring physical properties of aerosols at the different measurement stations. A simultaneous calibration on AOD data was performed for the Cimel-318 Sun photometers. When a common calibration and methodology was applied, the deviation was lowered to much less than 0.01 for AOD. At the same time an intercomparison has been made between the AOD values given by the spectroradiometers and the Sun photometers, with deviations obtained from 0.01 to 0.03 for the AOD in the visible range, depending on the channel. In the UVA range, the AOD uncertainty was estimated to be around 0.02 and 0.05 for Cimel and Licor respectively. In general the experimental differences were in agreement with this uncertainty estimation. In the UVB range the AOD measurements should not be used due to maximum instrumental uncertainties.
Several epidemiological studies have shown that the outbreaks of Saharan dust over southern European countries can cause negative health effects. The reasons for the increased toxicity of airborne particles during dust storms remain to be understood although the presence of biogenic factors carried by dust particles or the interaction between dust and man-made air pollution have been hypothesized as possible causes. Intriguingly, recent findings have also demonstrated that during Saharan dust outbreaks the local man-made particulates can have stronger effects on health than during days without outbreaks. We show that the thinning of the mixing layer (ML) during Saharan dust outbreaks, systematically described here for the first time, can trigger the observed higher toxicity of ambient local air. The mixing layer height (MLH) progressively reduced with increasing intensity of dust outbreaks thus causing a progressive accumulation of anthropogenic pollutants and favouring the formation of new fine particles or specific relevant species likely from condensation of accumulated gaseous precursors on dust particles surface. Overall, statistically significant associations of MLH with all-cause daily mortality were observed. Moreover, as the MLH reduced, the risk of mortality associated with the same concentration of particulate matter increased due to the observed pollutants accumulation. The association of MLH with daily mortality and the effect of ML thinning on particle toxicity exacerbated when Saharan dust outbreaks occurred suggesting a synergic effect of atmospheric pollutants on health which was amplified during dust outbreaks. Moreover, the results may reflect higher toxicity of primary particles which predominate on low MLH days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.