This study analysed the changes in the electromyographic activity (EMG) of the vastus lateralis muscle (VL) during an incremental maximal oxygen uptake test on a treadmill. A breakpoint in the integrated electromyogram (iEMG)-velocity relationship has already been interpreted in two ways: either as a sign of neuromuscular fatigue or as an expression of the iEMG-velocity relationship characteristics. The aim of this study was to test a method of distinguishing fatigue eects from those due to increases in exercise power. Eight well-trained male runners took part in the study. They completed a running protocol consisting of 4-min stages of increments in power output. Between each stage (about 15 s after the start of a minute at rest), the subjects had to maintain a standard eort: a 10-s isometric leg extension contraction [50% isometric maximal voluntary contraction (IMVC)]. The EMG was recorded during the running and isometric protocols, a change in the EMG signal during the isometric exercise being considered as the sign of fatigue. The iEMG-velocity relationships were strongly ®tted by a second-order polynomial function for data taken at both the start (r 0.98) and the end (r 0.98) of the stage. Based on the stability of the 50%IMVC-iEMG relationship noted between stages, the start-iEMG has been identi®ed as expressing the iEMG-velocity relationship without fatigue. The stage after which end-iEMG increased signi®cantly more steeply than start-iEMG was considered as the iEMG threshold and was simultaneous with the ventilatory equivalent for carbon dioxide threshold. The parallel changes of minute ventilation and iEMG would suggest the existence of common regulation stimuli linked either to eort intensity and/or to metabolic conditions. The fall in intracellular [K + ] has been discussed as being one of the main factors in regulating ventilation.
The hypothesis that critical power (CP) is significantly lower than the maximal aerobic power of the knee extensors has been tested in nine endurance-trained subjects, seven gymnasts and seven weight lifters. CP was calculated as being equal to the slope of the linear relationship between exhaustion time and work performed at exhaustion on a knee-extension ergometer. CP was compared with the power output at the end of a progressive knee-extension exercise (P(peak)) and the power outputs corresponding to exhaustion times equal to 4 (P(4 min)), 6 (P(6 min)), 8 (P(8 min)) and 10 min (P(10 min)), calculated according to the linear relationship between work and exhaustion time. The hypothesis that CP corresponds to a steady state in metabolic and physiological parameters was tested in the gymnasts and the weight lifters by comparing CP with the fatigue thresholds of the integrated electromyogram (iEMG(FT)), lactate level (La(FT)), oxygen uptake (VO(2FT)) and heart rate (HR(FT)). The results of the present study demonstrate that the value of CP of a local exercise cannot be considered as the equivalent of the maximal aerobic power for general exercises. The values of P(4 min), P(6 min), P(8 min), P(10 min) and P(peak) were significantly higher than CP, and corresponded to 138, 126, 119, 115 and 151% CP, respectively. The results of the present study indicate that CP can be considered as an index of muscular endurance. Indeed, La(FT), iEMG (FT), VO(2FT) and HR(FT) were not significantly different from CP. All of these fatigue thresholds were significantly correlated with CP (r > 0.92). Moreover, the highest coefficient of correlation (r=0.71; P < 0.01) between the percentage of maximal aerobic power in cycling that corresponds to a blood lactate concentration of 4 mmol x l(-1) (OBLA%) and the different local aerobic indices was observed with CP.
Four incremental protocols of knee extension exercise of different stage durations were compared to study the effect of the protocol upon power output at the last stage (Ppeak). Previous studies of knee extension have found very different power outputs with similar ergometers and these large differences have been interpreted as being the result of the fatigue due to the durations of the protocols. The knee extension device used in previous studies was modified to avoid the action of the knee and hip flexors: the subjects pushing on a lever instead of pulling a rod. In the present study five subjects performed four incremental knee extension exercises which differed with regard to stage duration (60, 90, 180 or 360 s) on this ergometer. The Ppeak, peak oxygen uptake (VO2peak) and peak heart rate (HRpeak) were measured at the end of each of these four incremental protocols. In eight subjects, the reliability of the protocols with the two shortest increments (60 and 90-s stages) was verified by measuring Ppeak at 60 s and 90 s (Ppeak60, Ppeak90) twice. The knee ergometer proposed in the present paper was easy to use without any special training and should improve the measurement of Ppeak. The Ppeak60 [49.4 (SD 5.6) W] was higher than at 180 s [Ppeak180), 43.6 (SD 5.8) W, P < 0.05] and at 360 s [Ppeak360, 43.4 (SD 5.3) W, P < 0.05]. All the other differences in Ppeak, VO2 peak and HRpeak were not significant. All correlations between Ppeak60, Ppeak90, Ppeak180 and Ppeak360 were significant, except those between Ppeak360 and Ppeak90 or Ppeak180. The effect of the stage duration on power output and oxygen uptake at the end of the knee extension exercises was not great. Consequently, the large differences in power output and oxygen uptake observed in previous studies cannot be explained by the protocol only. The significant difference between Ppeak 60 and Ppeak90 was of the order of 10% in agreement with findings in the literature using cycle ergometry. The reliability of Ppeak60 and Ppeak90 was high and the use of these protocols can be recommended if further studies show that the measurement of Ppeak, is useful in the evaluation of local endurance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.