Chemical Mechanical Planarization (CMP) occurs at an atomic level at the slurry/wafer interface and hence slurries and polishing pads play a critical role in the successful implementation of this process. Surface roughness, visco-elastic properties, thickness and pore size also play an important role in this process. Unfortunately the mechanical properties of polyurethane polishing pads used in CMP are poorly understood. Here we have studied the mechanical and visco-elastic properties and surface morphology of CMP pads using nano-indentation and dynamic mechanical analysis along with high resolution scanning electron microscopy. A state-of-the-art Universal Micro-Tribometer was used to measure the pad deformation behavior under load. A novel non-destructive scanning ultrasonic transmission technique was also used to characterize inhomogeneity of the visco-elastic properties of full-size CMP pads. Results obtained by different techniques were analyzed to demonstrate methods for quick and reliable evaluation of pad quality for current CMP technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.