Adult animals continue to produce new neurons in the dentate gyrus of hippocampus. Until now, the principal method of studying neurogenesis has been to inject either tritiated thymidine or 5'-Bromo-2-deoxyuridine (BrdU) intraperitoneally followed by autoradiographic or immunohistochemical detection methods respectively. However, such exogenous markers may produce toxic effects. Our objective was to determine whether Ki-67, a nuclear protein expressed in all phases of the cell cycle except the resting phase, can be used as an alternative, endogenous marker. Using immunohistochemistry, we examined Ki-67 and BrdU expression pattern in rats. Ki-67 was expressed within the proliferative zone of the dentate gyrus and its expression pattern mimicked that of BrdU when examined soon after exogenous BrdU administration. Quantitative comparison of BrdU and Ki-67-positive cells showed 50% higher numbers of the latter when examined 24 h after the BrdU injection. This was expected, since BrdU can be incorporated into DNA only during the S-phase of the mitotic process, whereas Ki-67 is expressed for its whole duration. Experimental increases (by ischemia) or reductions (by radiation) in the number of mitotic cells produced parallel changes in BrdU and Ki-67 signals. Thus, Ki-67 is an effective mitotic marker and has most of the benefits of BrdU and none of the costs. This study provides evidence for Ki-67 to be used as a marker of proliferation in the initial phase of adult neurogenesis.
Class I metabotropic glutamate receptors (mGluRs) have been postulated to play a role in synaptic plasticity. To test the involvement of one member of this class, we have recently generated mutant mice that express no mGluR5 but normal levels of other glutamate receptors. The CNS revealed normal development of gross anatomical features. To examine synaptic functions we measured evoked field EPSPs in the hippocampal slice. Measures of presynaptic function, such as paired pulse facilitation in mutant CA1 neurons, were normal. The response of mutant CA1 neurons to low concentrations of (1S,3R)Ϫ1-amino-cyclopentane-1,3-dicarboxylic acid (ACPD) was missing, which suggests that mGluR5 may be the primary high affinity ACPD receptor in these neurons. Long-term potentiation (LTP) in mGluR5 mutants was significantly reduced in the NMDA receptor (NMDAR)-dependent pathways such as the CA1 region and dentate gyrus of the hippocampus, whereas LTP remained intact in the mossy fiber synapses on the CA3 region, an NMDAR-independent pathway. Some of the difference in CA1 LTP could lie at the level of expression, because the reduction of LTP in the mutants was no longer observed 20 min after tetanus in the presence of 2-amino-5-phosphonopentanoate. We propose that mGluR5 plays a key regulatory role in NMDAR-dependent LTP. These mutant mice were also impaired in the acquisition and use of spatial information in both the Morris water maze and contextual information in the fear-conditioning test. This is consistent with the hypothesis that LTP in the CA1 region may underlie spatial learning and memory.
Ongoing neurogenesis in the adult hippocampal dentate gyrus (DG) generates a substantial population of young neurons. This phenomenon is present in all species examined thus far, including humans. Although the regulation of adult neurogenesis by various physiologically relevant factors such as learning and stress has been documented, the functional contributions of the newly born neurons to hippocampal functions are not known. We investigated possible contributions of the newly born granule neurons to synaptic plasticity in the hippocampal DG. In the standard hippocampal slice preparation perfused with artificial cerebrospinal fluid (ACSF), a small (10%) long-term potentiation (LTP) of the evoked field potentials is seen after tetanic stimulation of the afferent medial perforant pathway (MPP). The induction of this ACSF-LTP is resistant to a N-methyl-D-aspartate (NMDA) receptor blocker, D,L-2-amino-5-phosphonovaleric acid (APV), but is completely prevented by ifenprodil, a blocker of NR2B subtype of NMDA receptors. In contrast, slices perfused with picrotoxin (PICRO), a GABA-receptor blocker, revealed a larger (40--50%), APV-sensitive but ifenprodil-insensitive LTP. The ACSF-LTP required lower frequency of stimulation and fewer stimuli for its induction than the PICRO-LTP. All these characteristics of ACSF-LTP are in agreement with the properties of the putative individual new granule neurons examined previously with the use of the whole cell recording technique in a similar preparation. A causal relationship between neurogenesis and ACSF-LTP was confirmed in experiments using low dose of gamma radiation applied to the brain 3 wk prior to the electrophysiological experiments. In these experiments, the new cell proliferation was drastically reduced and ACSF-LTP was selectively blocked. We conclude that the young, adult-generated granule neurons play a significant role in synaptic plasticity in the DG. Since DG is the major source of the afferent inputs into the hippocampus, the production and the plasticity of new neurons may have an important role in the hippocampal functions such as learning and memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.