Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] at 1 × 10−5and 1 × 10−4M increased the leakage of previously absorbed,32P-labeled orthophosphate from the roots of onion (Allium cepaL.), a susceptible species, by 14 and 41 times the control values, respectively. A significant amount of32P leaked from the roots of the moderately susceptible species, cotton (Gossypium hirsutumL. ‘DPL 61′) and cucumber (Cucumis sativusL. ‘Ashley′), whereas no significant loss of32P occurred from two tolerant species, soybean [Glycine max(L.) Merr. ‘Bragg′] and corn (Zea maysL. ‘Pioneer 3369A′). At either 1 × 10−7or 1 × 10−6M, 1,8-naphthalic anhydride (NA) prevented32P leakage from onion roots in the presence of 1 × 10−5M metolachlor. High concentrations of NA [0.1% (w/v) suspensions], however, promoted32P leakage and did not protect onion roots from the leakage induced by high concentrations (1 × 10−4M) of metolachlor. Neither metolachlor nor alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide], at 1 × 10−4M, inhibited the uptake of acetate-2-14C or malonic acid-2-14C into excised cotton root tips or the incorporation of the precursors into lipids. Similarly, neither herbicide inhibited phospholipid synthesis by cotton root tips. Incorporation of14C-choline chloride into phosphatidylcholine was not significantly inhibited by metolachlor.
Computer models of the CO2-N2-He laser system usually predict that 20%–33% of the discharge energy should be available as radiation output. Using a comprehensive kinetics model to study vibrational temperatures and stored energies, we find a deterioration in laser efficiency with increasing input energy, due to electron superelastic losses during the excitation pulse. Experimental observations support the calculated vibrational temperatures and likewise our predicted 8%–12% yield efficiency at optimum excitation is in good agreement with the values realized in working lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.