A method for solving problems of the form min JtEH »EJl 1 /i 2 (x) is presented. The approach of Levenberg and Marquardt is used, except that the linear least squares subproblem arising at each iteration is not solved exactly, but only to within a certain tolerance. The method is most suited to problems in which the Jacobian matrix is sparse. Use is made of the iterative algorithm LSQR of Paige and Saunders for sparse linear least squares.A global convergence result can be proven, and under certain conditions it can be shown that the method converges quadratically when the sum of squares at the optimal point is zero.Numerical test results for problems of varying residual size are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.