Electroluminescence from organic materials has the potential to enable low-cost, full-color flat-panel displays, as well as other emissive products. Some materials have now demonstrated adequate efficiencies (1 to 15 lumens/watt) and lifetimes (>5000 hours) for practical use; however, the factors that govern lifetime remain poorly understood. This article provides a brief review of device principles and applications requirements and focuses on the understanding of reliability issues.
We report electroluminescence (EL) degradation studies of thin-film organic light-emitting diodes under ambient conditions. Bilayer organic ITO/TPD/Alq3/Mg/Ag devices were studied via EL and photoluminescence (PL) microscopy. In situ imaging of device luminescing areas and measurement of sample luminance were performed, allowing for a detailed study of black spot formation and luminance reduction under constant voltage stress conditions. Post-stress devices were further characterized using PL microscopy, and it was found that black spots result from delamination of the metal at the Alq3/Mg interface initiated by pinholes on the cathode, caused by substrate defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.