Electroluminescence from organic materials has the potential to enable low-cost, full-color flat-panel displays, as well as other emissive products. Some materials have now demonstrated adequate efficiencies (1 to 15 lumens/watt) and lifetimes (>5000 hours) for practical use; however, the factors that govern lifetime remain poorly understood. This article provides a brief review of device principles and applications requirements and focuses on the understanding of reliability issues.
A truncated-inverted-pyramid (TIP) chip geometry provides substantial improvement in light extraction efficiency over conventional AlGaInP/GaP chips of the same active junction area (∼0.25 mm2). The TIP geometry decreases the mean photon path-length within the crystal, and thus reduces the effects of internal loss mechanisms. By combining this improved device geometry with high-efficiency multiwell active layers, record-level performance for visible-spectrum light-emitting diodes is achieved. Peak efficiencies exceeding 100 lm/W are demonstrated (100 mA dc, 300 K) for orange-emitting (λp∼610 nm) devices, with a peak luminous flux of 60 lumens (350 mA dc, 300 K). In the red wavelength regime (λp∼650 nm), peak external quantum efficiencies of 55% and 60.9% are measured under direct current and pulsed operation, respectively (100 mA, 300 K).
We report electroluminescence (EL) degradation studies of thin-film organic light-emitting diodes under ambient conditions. Bilayer organic ITO/TPD/Alq3/Mg/Ag devices were studied via EL and photoluminescence (PL) microscopy. In situ imaging of device luminescing areas and measurement of sample luminance were performed, allowing for a detailed study of black spot formation and luminance reduction under constant voltage stress conditions. Post-stress devices were further characterized using PL microscopy, and it was found that black spots result from delamination of the metal at the Alq3/Mg interface initiated by pinholes on the cathode, caused by substrate defects.
We have demonstrated hole injection through a tunnel junction embedded in the GaN-based light emitting diode structure. The tunnel junction consists of 30 nm GaN:Si++ and 15 nm InGaN:Mg++ grown on a GaN–InGaN quantum well heterostructure. The forward voltage of the light emitting diode, including the voltage drop across the reverse-biased tunnel junction, is 4.1 V at 50 A/cm2, while that of a standard light emitting diode with a conventional contact structure is 3.5 V. The light output of the diode with the tunnel junction is comparable to that of the standard device. This tunnel junction eliminates the need for a highly resistive p-AlGaN cladding layer in short-wavelength laser diodes and the semi-transparent electrode required for current spreading in conventional GaN-based light emitting diodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.