We report a GaAs-based high-speed, resonant-cavity-enhanced, heterostructure metal–semiconductor–metal photodetector with Al0.24Ga0.76As/Al0.9Ga0.1As distributed Bragg reflector operating around 850 nm. The photocurrent spectrum shows a clear peak at this wavelength with full width at half maximum (FWHM) of around 30 nm. At resonance wavelength, a seven-fold increase can be achieved in quantum efficiency compared to a detector of the same absorption depth. The top reflector is a delta modulation doped Al0.24Ga0.76As that also acts as the barrier enhancement layer thus providing very low dark current values. The breakdown voltage is above 20 V. Time response measurements show rise time, fall time, and FWHM of 8.8 ps, 9 ps, and 8.1 ps, respectively, giving a 3-dB bandwidth of about 33 GHz. Combination of low dark current, fast response, wavelength selectivity, and compatibility with high electron mobility transistors makes this device especially suitable for short haul communications purposes.