Glass fibers reinforced polymer composites have been prepared by various manufacturing technology and are widely used for various applications. Initially, ancient Egyptians made containers by glass fibers drawn from heat softened glass. Continues glass fibers were first manufactured in the 1930s for high-temperature electrical application. Nowadays, it has been used in electronics, aviation and automobile application etc. Glass fibers are having excellent properties like high strength, flexibility, stiffness and resistance to chemical harm. It may be in the form of roving’s, chopped strand, yarns, fabrics and mats. Each type of glass fibers have unique properties and are used for various applications in the form of polymer composites. The mechanical, tribological, thermal, water absorption and vibrational properties of various glass fiber reinforced polymer composites were reported.
The polymer matrix composites have been widely used for many applications. These are light in weight and easy for manufacturing. The hybrid fiber reinforced composites have been prepared to enhance the mechanical, thermal, damping properties compared to single-fiber reinforced composites. The fiber reinforced hybrid composites consist of two or more fiber in a matrix system. The different fibers were reinforced with suitable matrix for preparing the hybrid composites using various manufacturing methodology. The hybrid composites are used for many application and replacing wood, wood fiber composites and conventional materials. The mechanical properties (tensile, flexural and impact), dynamic, tribological and water absorption properties of natural fiber reinforced hybrid polymer composites and natural/ synthetic fiber reinforced hybrid polymer composites were reported.
The aim of the present research work is to enhance the thermal and dynamic mechanical properties of Kevlar/Cocos nucifera sheath (CS)/epoxy composites with graphene nano platelets (GNP). Laminates were fabricated through the hand lay-up method followed by hot pressing. GNP at different wt.% (0.25, 0.5, and 0.75) were incorporated with epoxy resin through ultra-sonication. Kevlar/CS composites with different weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) were fabricated while maintaining a fiber/matrix weight ratio at 45/55. Thermal degradation and viscoelastic properties were evaluated using thermogravimetric analysys (TGA), differential scanning calorimetric (DSC) analysis, and a dynamic mechanical analyser (DMA). The obtained results revealed that Kevlar/CS (25/75) hybrid composites at 0.75 wt.% of GNP exhibited similar thermal stability compared to Kevlar/epoxy (100/0) composites at 0 wt.% of GNP. It has been corroborated with DSC observation that GNP act as a thermal barrier. However, DMA results showed that the Kevlar/CS (50/50) hybrid composites at 0.75 wt.% of GNP exhibited almost equal viscoelastic properties compared to Kevlar/epoxy (100/0) composites at 0 wt.% GNP due to effective crosslinking, which improves the stress transfer rate. Hence, this research proved that Kevlar can be efficiently (50%) replaced with CS at an optimal GNP loading for structural applications.
The aim of this research work is to develop high performance structural composites using Kevlar 29 (K) and Cocos nucifera sheath (CNS). The Kevlar and CNS laminates were fabricated by using hand lay-up method followed by hot pressing. The weight ratios of Kevlar/CNS are as follows 100/0 (S1), 75/25(S2), 50/50 (S3), 25/75 (S4), 0/100(S5). Thermal and viscoelastic properties of laminated composites were investigated as a function of temperature using thermogravimetric (TGA) and dynamic mechanical analyzer (DMA). The obtained results revealed that the thermal stability, char residue of S2 laminate was higher compared S3, S4 and S5 laminates. Moreover, S2 laminates showed comparable thermal stability with Kevlar/epoxy composites (S1). Differential scanning calorimetry (DSC) results revealed that hybrid composite (S2) offers a virtuous resistance or stability towards heat in the epoxy composites. Viscoelastic analysis results showed that the storage modulus (E') and loss modulus (E") of S2 composites were higher among the laminates due to improved interfacial interactions and effective stress transfer rate. Moreover, the damping of hybrid laminates (S2) almost closer to Kevlar/epoxy laminates (S1). Hence, it was observed that hybrid Kevlar/CNS composites (S2) can be efficiently utilized for advanced structural applications where rigidity, thermal stability along with renewability are prime requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.