Nuclear fission technologies have the potential to play a significant role in the energy mix of a net-zero and sustainable society. However, to achieve the sustainability goal two significant challenges remain: efficient and sustainable fuel usage and the minimization of long-term nuclear waste. Civil nuclear molten salt systems and technologies offer the opportunity to address both, delivering future reactors at scale for efficient and effective power production and nuclear waste burnup. Potentially, both objectives could be fulfilled in one reactor system, which could significantly improve sustainability indices. The key to this innovation is demand driven development of a significantly reduced fuel cycle with enhanced proliferation resistance which offers further potential for improvement. To achieve these goals, a transformative approach for salt clean-up during molten salt reactor operation is proposed, by concentrating on the detection and removal of key neutron poisoning elements which prevent the reactor from long-term operation. To enable this highly innovative development work, a novel analysis of the evolving elementary fuel composition, their concentrations, and their criticality influence is now provided in this work. This, combined with consideration of the oxidation states of each of these elements then provides the basis for the selection of these key poisons and the development of advanced separation processes and process monitoring. This work also discusses the importance of the effective integration of physics and chemistry when systems modelling in achieving these system development goals.
Microelectrodes have a number of advantages over macroelectrodes for quantitative electroanalysis and monitoring, including reduced iR drop, a high signal-to-noise ratio and reduced sensitivity to convection. Their use in molten salts has been generally precluded by the combined materials challenges of stresses associated with thermal cycling and physical and corrosive chemical degradation at the relatively high temperatures involved. We have shown that microfabrication, employing high precision photolithographic patterning in combination with the controlled deposition of materials, can be used to successfully address these challenges. The resulting molten salt compatible microelectrodes (MSMs) enable prolonged quantitative microelectrode measurements in molten salts (MSs). This paper reports the fabrication of novel MSM disc electrodes, chosen because they have an established ambient analytical response. It includes a detailed set of electrochemical characterisation studies which demonstrate both their enhanced capability over macroelectrodes and over commercial glass pulled microelectrodes, and their ability to extract quantitative electroanalytical information from MS systems. MSM measurements are then used to demonstrate their potential for shedding new light on the fundamental properties of, and processes in, MSs, such as mass transport, charge transfer reaction rates and the selective plating/stripping and alloying reactions of liquid Bi and other metals; this will underpin the development of enhanced MS industrial processes, including pyrochemical spent nuclear fuel reprocessing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.