Quark nuggets are theoretical objects composed of approximately equal numbers of up, down, and strange quarks and are also called strangelets and nuclearites. They have been proposed as a candidate for dark matter, which constitutes ~85% of the universe’s mass and which has been a mystery for decades. Previous efforts to detect quark nuggets assumed that the nuclear-density core interacts directly with the surrounding matter so the stopping power is minimal. Tatsumi found that quark nuggets could well exist as a ferromagnetic liquid with a ~1012-T magnetic field. We find that the magnetic field produces a magnetopause with surrounding plasma, as the earth’s magnetic field produces a magnetopause with the solar wind, and substantially increases their energy deposition rate in matter. We use the magnetopause model to compute the energy deposition as a function of quark-nugget mass and to analyze testing the quark-nugget hypothesis for dark matter by observations in air, water, and land. We conclude the water option is most promising.
Quark nuggets are a candidate for dark matter consistent with the Standard Model. Previous models of quark nuggets have investigated properties arising from their being composed of strange, up, and down quarks and have not included any effects caused by their self-magnetic field. However, Tatsumi found that the core of a magnetar star may be a quark nugget in a ferromagnetic state with core magnetic field Bsurface = 1012±1 T. We apply Tatsumi’s result to quark-nugget dark-matter and report results on aggregation of magnetized quark nuggets (MQNs) after formation from the quark-gluon plasma until expansion of the universe freezes out the mass distribution to ~ 10−24 kg to ~ 1014 kg. Aggregation overcomes weak-interaction decay. Computed mass distributions show MQNs are consistent with requirements for dark matter and indicate that geologic detectors (craters in peat bogs) and space-based detectors (satellites measuring radio-frequency emissions after passage through normal matter) should be able to detect MQN dark matter. Null and positive observations narrow the range of a key parameter Bo ~ Bsurface to 1 × 1011 T < Bo ≤ 3 × 1012 T.
We have developed an empirical electrical-breakdown relation that can be used to design large-area water-insulated pulsed-power systems. Such systems often form an integral part of multiterawatt pulsedpower accelerators, and may be incorporated in future petawatt-class machines. We find that complete dielectric failure is likely to occur in water between a significantly field-enhanced anode and a lessenhanced cathode when E p 0:3300:026 eff 0:135 0:009. In this expression E p V p =d is the peak value in time of the spatially averaged electric field between the anode and cathode (in MV=cm), V p is the peak voltage across the electrodes, d is the distance between the anode and cathode, and eff is the temporal width (in s) of the voltage pulse at 63% of peak. This relation is based on 25 measurements for which 1 V p 4:10 MV, 1:25 d 22 cm, and 0:011 eff 0:6 s. The normalized standard deviation of the differences between these measurements and the associated predictions of the relation is 12%.
The Particle Beam Fusion Accelerator II (PBFA II) is presently under construction and is the only existing facility with the potential of igniting thermonuclear fuel in the laboratory. The accelerator will generate up to 5 megamperes of lithium ions at 30 million electron volts and will focus them onto an inertial confinement fusion (ICF) target after beam production and focusing have been optimized. Since its inception, the light ion approach to ICF has been considered the one that combines low cost, high risk, and high payoff. The beams are of such high density that their self-generated electric and magnetic fields were thought to prohibit high focal intensities. Recent advances in beam production and focusing demonstrate that these self-forces can be controlled to the degree required for ignition, break-even, and high gain experiments. ICF has been pursued primarily for its potential military applications. However, the high efficiency and cost-effectiveness of the light ion approach enhance its potential for commercial energy application as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.