Sandwich structures were fabricated by a vacuum deposition method using MPc (M = Cu, Zn), with a Tetrathiafulvalene (TTF) derivative, and Indium Tin Oxide (ITO) and aluminum electrodes. The structure and morphology of the deposited films were studied by IR spectroscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The absorption spectra of TTF derivative-MPc (M = Cu, Zn) thin films deposited at room temperature were recorded in the spectral range 200-1000 nm. The optical band gap of the thin films was determined from the (αhν) 1/2 vs. hν plot. The direct-current (DC) electrical properties of the glass/ITO/TTF deriv -MPc (M = Cu, Zn)/Al structures were also investigated. Changes in conductivity of the derivative-TTF-enriched Pc compounds suggest the formation of alternative paths for carrier conduction. At low voltages, forward current density obeys an ohmic I-V relationship; at higher voltages, conduction is mostly due to a space-charge-limited conduction (SCLC) mechanism.
In this work, the synthesis of semiconducting molecular materials formed from metallo-phthalocyanines (MPcs) and bidentate amines is reported. Powder and thin-film samples of the synthesized materials, deposited by vacuum thermal evaporation, show the same intra-molecular bonds in IR-spectroscopy studies. The morphology of the deposited films was studied using scanning electron microscopy and atomic force microscopy. The optical parameters have been investigated using spectrophotometric measurements of transmittance in the wavelength range 200-1100 nm. The absorption spectra in the UV-Vis region for the deposited samples showed two bands, namely the Q and Soret bands. The optical band gap values of the thin films were calculated from the absorption coefficient α in the absorption region and were found to be around 1.4-1.6 eV. The dependence of the Tauc and Cody optical gaps on the thickness of the film was also determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.