The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km. The measurement is based on data taken by OPERA in the years 2009, 2010 and 2011. Dedicated upgrades of the CNGS timing system and of the OPERA detector, as well as a high precision geodesy campaign for the measurement of the neutrino baseline, allowed reaching comparable systematic and statistical accuracies.An arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of (6.5 ± 7.4 (stat.) +8.3 −8.0 (sys.)) ns was measured corresponding to a relative difference of the muon neutrino velocity with respect to the speed of light (v − c)/c = (2.7 ± 3.1 (stat.) +3.4 −3.3 (sys.)) × 10 −6 . The above result, obtained by comparing the time distributions of neutrino interactions and of protons hitting the CNGS target in 10.5 µs long extractions, was confirmed by a test performed at the end of 2011 using a short bunch beam allowing to measure the neutrino time of flight at the single interaction level.
review the design and construction of the detector and of its related infrastructures, and report on some technical performances of the various components. The construction of the detector started in 2003 and it was completed in Summer 2008. The experiment is presently in the data taking phase. The whole sequence of operations has proven to be successful, from triggering to brick selection, development, scanning and event analysis.
This article describes time distribution in a White Rabbit Network. We start by presenting a short overview of the White Rabbit project explaining its requirements to highlight the importance of the timing aspects of the system. We then introduce the technologies used to achieve high clock accuracy, stability and resilience in all the components of the network. In particular, the choice of the IEEE 1588-2008 (PTP) and Synchronous Ethernet standards are explained. In order to accommodate hardwaresupported mechanisms to increase PTP synchronization accuracy, we introduce the White Rabbit extension to PTP (WRPTP). The hardware used to support WRPTP is presented. Measured results of WRPTP performance demonstrate sub-nanosecond accuracy over a 5km fiber optic link with a precision below 10ps and a reduced PTP-message exchange rate. Tests of the implementation show full compatibility with existing PTP gear.
At the end of the 2011 run, the CERN CNGS neutrino beam has been briefly operated in lower intensity mode with similar to 10(12) p.o.t/pulse and with a proton beam structure made of four LHC-like extractions, each with a narrow width of similar to 3 ns, separated by 524 ns. This very tightly bunched beam allowed a very accurate time-of-flight measurement of neutrinos from CERN to LNGS on an event-by-event basis. The ICARUS T600 detector (CNGS2) has collected 7 beam-associated events, consistent with the CNGS collected neutrino flux of 2.2 x 10(16) p.o.t. and in agreement with the well-known characteristics of neutrino events in the LAr-TPC. The time of flight difference between the speed of light and the arriving neutrino LAr-TPC events has been analysed. The result delta t = 0.3 +/- 4.9(stat.) +/- 9.0(syst.) ns is compatible with the simultaneous arrival of all events with speed equal to that of light. This is in a striking difference with the reported result of OPERA (OPERA Collaboration, 2011) [1] claiming that high energy neutrinos from CERN arrive at LNGS similar to 60 ns earlier than expected from luminal speed. (C) 2012 Elsevier B.V. All rights reserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.