This paper presents a frequency-selective RF vector predistortion linearization system for RF multicarrier power amplifiers (PAs) affected by strong differential memory effects. Differential memory effects can be revealed in two-tone experiment by the divergence for increasing tone-spacing of the vector Volterra coefficients associated with the lower and upper intermodulations tones. Using large-signal vector measurement with a large-singal network analyzer, a class-AB LDMOS RF PA is demonstrated to exhibit a strong differential memory effect for modulation bandwidth above 0.3 MHz. New frequency-selective RF and baseband predistortion linearization algorithms are proposed to separately address the linearization requirements of the interband and inband intermodulation products of both the lower and upper sidebands. Theoretical verification of the algorithms are demonstrated with MATLAB simulations using a Volterra/Wiener PA model with memory effects. The baseband linearization algorithm is next implemented in a field-programmable gate array and experimentally investigated for the linearization of the class-AB LDMOS PA for two carrier wideband code-division multiple-access signals. The ability of the algorithm to selectively linearize the two interband and four inband intermodulation products is demonstrated. Adjacent channel leakage ratio of up to 45 dBc for inband and interband are demonstrated experimentally at twice the typical fractional bandwidth.
We present analytic formulas for simultaneously extracting the parasitic resistances, inductances, and the intrinsic parameters of a small-signal FET equivalent circuit model including the non-quasi-static (NQS) charging time-constants associated with the gate and drain charges, respectively. For the NQS equivalent circuit topology considered, there exists a continuum of solutions for the circuit parameters, as a function of the source resistance, giving exactly the same frequency response fit. A multi-bias analysis is used to determine the final source resistance. Realistic results are obtained for power LDMOSFETs despite the very small value of the parasitics in these power RF devices.Index Terms-FET equivalent circuits, LDMOSFET, microwave small-signal modeling, non-quasi-static, parameter extraction.
A new approach for the electro-thermal modeling of LDMOSFETs for power-amplifier design that bypasses pulsed-IVs and pulsed-RF measurements is presented in this paper. The existence of low-frequency dispersion in LDMOSFETs is demonstrated by comparing pulsed IVs with iso-thermal IVs. The modeling technique uses iso-thermal IV and microwave measurements to obtain the temperature dependence of small-signal parameters. Optimized tensor-product B-splines, which distribute knots to minimize fitting errors, are used to represent the small-signal parameters and extract the large-signal model as a function of voltages and temperature. The model is implemented on ADS and is verified by simulating and measuring the power harmonics and IMD large-signal performance of a power amplifier. The impact on the model of temperature-dependent drain and gate charge is investigated. The presented model is found to compare well and, in some cases, exceed the existing MET model for LDMOSFETs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.